
Themes and Skins
WPF lets you build applications that have engaging, distinctive appearances. By using rela-
tively simple techniques such as drop shadows, partial transparency, and transparency masks,
you can make an eye-catching interface that adds interest and excitement to even the most
routine application.

Properties let you change the appearance of controls. They let you change visual characteristics
such as a control’s colors, size, location, and contents. Resources and styles let you package
those changes so that you can easily apply them to many controls simultaneously.

Templates let you alter the way controls behave by changing the pieces that make up the controls.
They let you change the appearance and behavior of Buttons, ListBoxes, Menus, and other con-
trols in fundamental ways while still allowing them to perform their essential functions.

Themes and skins bring all of these ideas together to let you easily change the appearance and
behavior of an entire application to suit the users’ needs and moods.

Themes

Some developers use the terms theme and skin interchangeably, but I make the distinction that
a skin applies to a single application (or part of an application), and a theme applies to more
than one application.

More precisely, a theme is a unifying plan that helps determine the appearance and behavior
of more than one application. The most common themes are those provided by Windows. For
example, Windows 7 provides the themes:

Aero➤➤

Classic➤➤

Luna (Homestead, Metallic, and Normal versions)➤➤

Royale➤➤

16

Copyright Wrox Press. Posted with permission.

284  ❘  Chapter 16   Themes and Skins

Using the System Theme
The ShowThemes example program shown in Figure 16-1 displays controls that use each of the
themes that come with Windows 7. The differences are fairly subtle, so you’ll need to look closely to
see the changes in each theme.

Figure 16-1

If you don’t use properties, styles, or templates to change a control’s appearance or behaviors, it uses
the values defined by the system’s current theme. In Figure 16-1, you can see that the controls in the
“default” group have the same appearance as those that use the Aero theme. This is because the sys-
tem had the Aero theme selected when I ran the program.

To change the system’s theme in
Windows 7, open the Control
Panel. Under “Appearance and
Personalization” click “Change the
theme.” On the dialog shown in
Figure 16-2, click the theme that you
want to use.

After taking the screenshot shown
in Figure 16-1, I followed these steps
to change the system’s theme to
Windows Classic without closing the
ShowThemes program. The program
automatically detected the change in
the system theme and redrew itself
appropriately.

Figure 16-3 shows the result. If you look closely, you’ll see that the controls in the default group now
match those that use the Classic theme.

Figure 16-2

Copyright Wrox Press. Posted with permission.

Themes  ❘  285

Figure 16-3

If you compare Figures 16-1 and 16-3 very closely, you’ll also see that the controls in the ShowThemes
program look a little different. In Figure 16-3, the window’s upper corners are not as rounded, the
title bar is darker, the border is no longer shaded with a light blue pattern, and the system icons in the
form’s upper-left and upper-right corners are different.

Using a Specific Theme
Normally you don’t need to even think about themes. If you leave a control’s appearance alone, it
will automatically use the system’s current theme and even change its appearance if you change the
theme. If you really want to, however, you can select a specific theme.

Changing Themes

This technique is probably more useful for testing an application to see what it looks
like in a particular theme than it is for actually forcing the theme on the users.

Some users may select a particular theme for a good reason. For example, a visually
impaired user may select a high-contrast theme to make programs easier to see. If
you change the theme, that user may be unable to use your application.

If you don’t really need a specific theme, you should let your program use the default.

To use a specific system theme in Visual Studio, begin a new WPF project. Open the Project menu
and select “Add Reference.” On the .NET tab, select the theme(s) that you want to use and click OK.
Figure 16-4 shows the Add Reference dialog with the Aero, Classic, Luna, and Royale themes selected.

Next, in a resource dictionary, use a MergedDictionaries object to load the theme. The theme will
apply to any controls that should be modified by the dictionary.

Copyright Wrox Press. Posted with permission.

286  ❘  Chapter 16   Themes and Skins

Figure 16-4

For example, the following code shows how the ShowThemes program uses the Luna Metallic theme.
Each group of controls shown in Figures 16-1 and 16-3 is contained in a StackPanel. Each StackPanel
has a ResourceDictionary that loads its theme.

<StackPanel>
 <StackPanel.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=
“/PresentationFramework.Luna;component/themes/luna.metallic.xaml” />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </StackPanel.Resources>
 <Label Style=”{StaticResource lblStyle}” Content=”luna.metallic”/>
 <Button Margin=”10” Content=”Click Me”/>
 <CheckBox Margin=”10” Content=”Check Me”/>
 <RadioButton Margin=”10” Content=”Press Me”/>
</StackPanel>

ShowThemes

Notice the unusual syntax for the ResourceDictionary’s Source property. The PresentationFramework.
Luna piece tells WPF which library contains the theme, and the rest of the Source gives the name of the
theme within the library.

For more information on Microsoft’s standard themes, go to msdn.microsoft.com/aa358533.aspx.
Links at the bottom of the web page lead to pages about the specific themes Aero, Classic, Luna, and
Royale. From those pages, you can download XAML files that show how the themes are defined. You
can then modify those files to build your own theme files.

Copyright Wrox Press. Posted with permission.

Skins  ❘  287

Theme Restrictions

I have had bad luck getting Expression Blend to use specific themes. It seems to
have trouble finding the DLLs for use by the ResourceDictionary’s Source prop-
erty. I’ve also had bad luck getting the compiled executable to run.

Perhaps these issues will be fixed in a later release, but for now I use this technique only
to see what the program will look like in different themes in programs built with Visual
Studio. If you figure out how to get these working in Expression Blend, e‑mail me at
RodStephens@vb-helper.com and I’ll post your solutions on the book’s web page.

Skins

Themes let a program automatically change to match the rest of the system’s appearance. Selecting a
specific theme lets a program change its appearance deliberately, but that’s generally not necessary. The
differences between the Luna Metallic and Aero Normal themes are so small that there’s little reason to
force the user to see one or the other when you could let the program use the system’s default theme.

Skins are much more interesting. A skin is a packaged set of appearances and behaviors that can
give an application (or part of an application) a distinctive appearance while still allowing it to pro-
vide its key features.

Skins are somewhat similar to themes in the sense that they define the appearance and behavior of
an application, but they generally make much larger changes in the application’s appearance than
those shown in Figures 16-1 and 16-3. Rather than unifying all of the applications running on a sys-
tem, the larger changes provided by skins can make an application stand out. A skin differentiates
the application and makes it easier for the user to tell applications apart at a glance.

For example, Figures 16-5 and 16-6 show the ResourceDictionaries example program (which is
described in Chapter 12) displaying two very different appearances. It’s the same program in both
figures and it contains the same controls — ​just rearranged slightly and with different colors, fonts,
and so forth.

Figure 16-5

Copyright Wrox Press. Posted with permission.

288  ❘  Chapter 16   Themes and Skins

Figure 16-6

The following sections describe skins and explain several ways you can implement them in WPF.

Hard Work Warning

Be warned that skinning takes a lot of work! Depending on the technique you use,
it may not be very complicated work, but it can be very time-consuming.

WPF provides so many tools for creating attractive user interfaces that it’s easy to
spend hours fiddling with control properties and arrangements, trying to build the
world’s most beautiful interface. Now multiply that effort to provide multiple skins,
and you could end up spending days on a window instead of “only” hours.

Skin Purposes
Usually skins are mostly decorative, changing the application’s colors, button shapes, form designs,
background images, and so forth. The skins shown in Figures 16-5 and 16-6 look very different but
only superficially. They still use the same controls in roughly the same positions.

Although skins are often decorative and used to increase a program’s “coolness factor,” multiple
skins can have legitimate business purposes.

For example, in the United States, roughly 8 percent of men and 0.4 percent of women have some
form of color vision deficiency and thus have trouble distinguishing among certain colors. If your
application provides multiple skins, users can change the colors or shapes used by the program so
they have less trouble getting the information they need.

In addition, as the general user population ages, applications must be ready to help older users.
Larger fonts, menus, buttons, and other components can make understanding and using an appli-
cation easier for users. Providing multiple skins with different element sizes also allows users with
larger screens to take advantage of the space they have available.

One use for skins that is usually overlooked is to make different interfaces so you can use the same
application for different purposes. For example, suppose you’re writing an order entry system.
Different kinds of users would need to see different pieces of an order at different times.

Copyright Wrox Press. Posted with permission.

Skins  ❘  289

When an order is initially created, the order entry clerk needs to know all about the customer and
order, and possibly payment information (depending on your arrangements with the customers).
Later, the shipping clerk who packages up the customer’s order only needs to know about the items
ordered and the customer’s shipping address, not payment information or previous order history. The
program might automatically send the customer an invoice, but if the customer calls with a question,
a billing clerk may need to know about the customer’s payment method and possibly past orders.

You can use different skins to satisfy the needs of these different users. The order entry clerk’s skin
would let the user locate customer data and enter information about a new order. The shipping clerk’s
skin would display information about the current order and the customer’s shipping address while
hiding payment information and previous order history.

The OrderTracking example program displays four different interfaces for different kinds of users.
Figure 16-7 shows the program’s four skins for managers, billing clerks, order entry clerks, and ship-
ping clerks.

Figure 16-7

The following XAML code shows how the OrderTracking program works:

<Window
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 x:Class=”Window1”
 x:Name=”Window”
 SizeToContent=”WidthAndHeight”
 Width=”300” Height=”360”
 ResizeMode=”NoResize”>

 <!-- ​ Load skin resources  -->
 <Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”resBasics.xaml”/>
 <!-- ​
 <ResourceDictionary Source=”resBillingClerk.xaml”/>
 <ResourceDictionary Source=”resOrderEntry.xaml”/>
 <ResourceDictionary Source=”resShippingClerk.xaml”/>
  -->
 <ResourceDictionary Source=”resManager.xaml”/>

Copyright Wrox Press. Posted with permission.

290  ❘  Chapter 16   Themes and Skins

 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Window.Resources>

 <!-- ​ Set window properties from resources  -->
 <Window.Background>
 <StaticResource ResourceKey=”brWindow”/>
 </Window.Background>
 <Window.FontFamily>
 <StaticResource ResourceKey=”ffWindow”/>
 </Window.FontFamily>
 <Window.FontSize>
 <StaticResource ResourceKey=”fsWindow”/>
 </Window.FontSize>
 <Window.FontWeight>
 <StaticResource ResourceKey=”fwWindow”/>
 </Window.FontWeight>
 <Window.Title>
 <StaticResource ResourceKey=”txtTitle”/>
 </Window.Title>

 <StackPanel Margin=”10”>
 <Button Content=”Unshipped Orders” Click=”btnUnshippedOrders_Click”
 Visibility=”{StaticResource visUnshippedOrder}”/>
 <Button Content=”Find Customer” Click=”btnFindCustomer_Click”
 Visibility=”{StaticResource visFindCustomer}”/>
 <Button Content=”New Order” Click=”btnNewOrder_Click”
 Visibility=”{StaticResource visCreateOrder}”/>
 <Button Content=”Track Order” Click=”btnTrackOrder_Click”
 Visibility=”{StaticResource visTrackOrder}”/>

 <Label Height=”30”
 Visibility=”{StaticResource visSystemMaintenance}”/>
 <Button Content=”System Maintenance” Click=”btnSystemMaintenance_Click”
 Foreground=”Red” Height=”40”
 Visibility=”{StaticResource visSystemMaintenance}”/>
 </StackPanel>
</Window>

OrderTracking

The program begins by defining Window attributes. Setting the SizeToContent attribute to
WidthAndHeight makes the window automatically resize itself to fit its content so the window is
an appropriate size no matter which skin it is using. The code also sets the ResizeMode attribute to
NoResize so the window stays that size.

Next, the code loads its resource dictionaries. The first one, resBasics.xaml, contains values that are
the same for every skin. It defines the window’s font properties and contains an unnamed Button
style that sets the Button sizes and margins.

After that, the code includes the resource dictionary for the skin it should display. The previous
code includes the resource file for managers, resManager.xaml, and the other resource files are
commented out.

Copyright Wrox Press. Posted with permission.

Skins  ❘  291

The code then uses resource properties to set the window’s background brush, font, and title. Giving
the skins different backgrounds and titles makes it easier to tell the skins apart at a glance.

Next, the code defines a StackPanel containing a series of Buttons. The Buttons’ Visibility
properties are set using resources defined in the skin resource dictionaries. The basic dictionary
resBasics.xaml sets Visibility = Collapsed for all of the buttons. The other dictionaries over-
ride those settings to display the appropriate buttons. For example, in the Order Entry dictionary,
resOrderEntry.xaml, the values visCreateOrder and visTrackOrder are set to Visible so the
“Create Order” and “Track Order” buttons are shown in the order entry skin.

The following code shows the resBasics.xaml resource dictionary that defines common values for
all of the skins. It defines the Window’s font characteristics and the Button style. It also hides all of
the Buttons.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

 <!-- ​ Main window  -->
 <FontFamily x:Key=”ffWindow”>Comic Sans MS</FontFamily>
 <FontWeight x:Key=”fwWindow”>Bold</FontWeight>
 <sys:Double x:Key=”fsWindow”>18</sys:Double>
 <sys:String x:Key=”txtTitle”>OrderTracking</sys:String>

 <!-- ​ Buttons style  -->
 <Style TargetType=”Button”>
 <Setter Property=”Width” Value=”200”/>
 <Setter Property=”Height” Value=”50”/>
 <Setter Property=”Margin” Value=”10”/>
 </Style>

 <!-- ​ Button visibilities  -->
 <Visibility x:Key=”visUnshippedOrders”>Collapsed</Visibility>
 <Visibility x:Key=”visCreateOrder”>Collapsed</Visibility>
 <Visibility x:Key=”visFindCustomer”>Collapsed</Visibility>
 <Visibility x:Key=”visTrackOrder”>Collapsed</Visibility>
 <Visibility x:Key=”visSystemMaintenance”>Collapsed</Visibility>
</ResourceDictionary>

OrderTracking

The following code shows the resOrderEntry.xaml skin resource dictionary. It defines the Window’s
background brush and title, and the Button visibilities for the order entry skin.

<ResourceDictionary
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

 <!-- ​ Main window  -->
 <LinearGradientBrush x:Key=”brWindow” StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”LightBlue” Offset=”0”/>
 <GradientStop Color=”Blue” Offset=”1”/>
 </LinearGradientBrush>

Copyright Wrox Press. Posted with permission.

292  ❘  Chapter 16   Themes and Skins

 <sys:String x:Key=”txtTitle”>OrderTracking - Order Entry</sys:String>

 <!-- ​ Button visibilities  -->
 <Visibility x:Key=”visCreateOrder”>Visible</Visibility>
 <Visibility x:Key=”visTrackOrder”>Visible</Visibility>
</ResourceDictionary>

OrderTracking

To use the OrderTracking program, you would compile the program and save the executable pro-
gram. Then you would change the included resource dictionary to load a different skin, recompile
the program, and save the new executable. You would repeat the process until you had created an
appropriate executable for each type of user.

Rather than creating separate versions of the program for each type of user, you could load the
appropriate skin at run time. The following sections describe three ways you can build skinnable
applications in WPF, all of which let the program change its skin at run time.

Resource Skins
The program ResourceDictionaries shown in Figures 16-5 and 16-6 uses two different sets of
resources to change its appearance at design time.

The following code shows the Window’s resource dictionary. The inner ResourceDictionary elements
load two different resource dictionaries. Because dictionaries loaded later override those loaded earlier,
you can change the application’s appearance by changing the order of these two elements. (As shown
here, the RedRed.xaml dictionary is loaded second, so the program uses its red interface, shown in
Figure 16-5.)

<Window.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source=”ResBlue.xaml”/>
 <ResourceDictionary Source=”ResRed.xaml”/>
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Window.Resources>

ResourceDictionary

While the program ResourceDictionaries can display two different appearances, you need to modify
the program at design time to pick the skin you want. This may be useful for building different inter-
faces for different kinds of users, but a truly skinnable program should allow the user to change skins
at run time.

To turn this into a truly skinnable application, all you need to do is give the program the ability to
change skins at run time.

The Skins example program is very similar to the program ResourceDictionaries except that it
can change skins at run time. To make that possible, most of its resources are dynamic rather than
static. The program also contains two new user interface elements: an Image and a Label.

Copyright Wrox Press. Posted with permission.

Skins  ❘  293

Restricted Skins

If you use different skins for different kinds of users (e.g., the order entry clerk and
shipping clerk described in the previous section), then you’ll need to restrict the skins
that each user can load. For example, you probably wouldn’t want the shipping clerk to
be able to load the billing clerk’s skin and view the customer’s credit card information.

When it displays its red interface, this program adds a small Image in its upper-right corner. This
Image has a context menu that displays the choices Red and Blue (shown on the left in Figure 16-8),
which let you pick between the red and blue skins.

Figure 16-8

The program’s blue interface displays a label in its upper-right corner (on the right in Figure 16-8)
that displays the same context menu.

The following code shows how the program displays its Options textbox on the blue interface:

<Label MouseDown=”Options_MouseDown”
 Grid.Row=”0” Grid.Column=”2” Margin=”2”
 Content=”Options” FontSize=”10”
 HorizontalAlignment=”Right” VerticalAlignment=”Top”
 Foreground=”Black” BorderBrush=”Black”
 BorderThickness=”1”
 Visibility=”{DynamicResource visBlue}”
>
 <Label.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Lime” Offset=”0”/>
 <GradientStop Color=”Green” Offset=”1”/>
 </LinearGradientBrush>
 </Label.Background>
 <Label.ContextMenu>
 <ContextMenu Name=”ctxOptions”>
 <MenuItem Header=”Red” Background=”Pink”
 Foreground=”Red”
 Click=”ctxSkin_Click” Tag=”ResRed.xaml”/>
 <MenuItem Header=”Blue” Background=”LightBlue”

Copyright Wrox Press. Posted with permission.

294  ❘  Chapter 16   Themes and Skins

 Foreground=”Blue”
 Click=”ctxSkin_Click” Tag=”ResBlue.xaml”/>
 </ContextMenu>
 </Label.ContextMenu>
</Label>

Skins

This code contains four real points of interest:

	 1.	 First, the Label’s MouseDown event triggers the Options_MouseDown event handler. This
routine, which is shown in the following code, displays the context menu by setting the
ContextMenu’s IsOpen property to True:

// Display the options context menu.
private void Options_MouseDown(object sender, RoutedEventArgs e)
{
 ctxOptions.IsOpen = true;
}

Skins

	 2.	 Second, the Label’s Visibility property is set to the value of the visBlue static resource. This
resource has the value True in the Blue resource dictionary and False in the Red resource dic-
tionary. This means that the Label is visible only in the blue interface. The red interface’s skin-
changing Image uses a similar visRed resource that is only True in the red interface.

	 3.	 Third, the context menu’s items have a Tag property that names the XAML resource file that
they load. For example, the Blue menu item has its Tag set to ResBlue.xaml. The program
uses the Tag property to figure out which file to load when the user picks a menu item.

	 4.	 Finally, both of the context menu’s items fire the ctxSkin_Click event handler shown in the
following code to load the appropriate skin:

// Use the selected skin.
private void ctxSkin_Click(object sender, RoutedEventArgs e)
{
 // Get the context menu item that was clicked.
 MenuItem menu_item = (MenuItem)sender;

 // Create a new resource dictionary, using the
 // menu item’s Tag property as the dictionary URI.
 ResourceDictionary dict = new ResourceDictionary();
 dict.Source = new Uri((String)menu_item.Tag, UriKind.Relative);

 // Remove all but the first dictionary.
 while (App.Current.Resources.MergedDictionaries.Count > 1)
 {
 App.Current.Resources.MergedDictionaries.RemoveAt(1);
 }

 // Install the new dictionary.
 App.Current.Resources.MergedDictionaries.Add(dict);
}

Skins

Copyright Wrox Press. Posted with permission.

Skins  ❘  295

This code gets the menu item that triggered the event and looks at the item’s Tag property to see which
resource file to load. It creates a ResourceDictionary object loaded from the file, removes old resource
dictionaries from the application’s MergedDictionaries collection, and adds the new dictionary.

Removed Resources Redux

The program doesn’t remove the first resource dictionary so that WPF doesn’t get con-
fused about missing resources and issue a flock of warnings. For more information, see
the note “Removed Resources” in the “Dynamic Resources” section of Chapter 12.

When the program loads the new resource dictionary, WPF detects the changed values and updates
all of the window’s dynamic resources.

This technique is what most developers think of as skinning in WPF applications: The program
loads multiple resource files at run time to provide different skins.

Animated Skins
The skins described in the previous section use separate resource dictionaries to provide different
appearances. The program’s XAML file sets its control properties to resource values so that when
you change the resource values, the interface changes accordingly.

Another way to change property values is to use property animation. Chapter 14 covers property ani-
mation in greater detail, but this section explains briefly how to use animation to provide skinning.

XAML files allow you to define triggers that launch
storyboards that represent property animations. For
example, when the user presses the mouse down over a
rectangle, the XAML code can run a storyboard that
varies the Rectangle’s Width property smoothly from
100 to 200 over a 1-second period.

The AnimatedSkins example program uses this
technique to provide skinning. Figure 16-9 shows
the program displaying its green skin. Figure 16-10
shows its blue skin.

When you click the appropriate control, a trigger
launches a storyboard that:

Resizes the main window and changes its ➤➤

Background brush.

Hides and displays the small blue or green ➤➤

ellipses in the upper-right corner that you
click to switch skins.

Moves ➤➤ Labels.

Figure 16-9

Figure 16-10

Copyright Wrox Press. Posted with permission.

296  ❘  Chapter 16   Themes and Skins

Resizes, moves, and changes the corner radii of the rectangles that act as buttons.➤➤

Changes the ➤➤ Fill and Stroke brushes for the rectangles pretending to be buttons.

Changes the text displayed in the ➤➤ Labels.

Moves and resizes the ➤➤ Image.

Changes the background and foreground colors.➤➤

Figure 16-11 shows the program a bit less than half-
way done switching from the green to the blue skin.
In this figure, you can see that the colors are moving
from green to blue, the labels are moving, and the
rectangle buttons have new positions, sizes, captions,
and rounded corners.

In addition to displaying very different appearances,
animated skins let the user watch as one interface
morphs into another. The effect is extremely cool.

The Price of Coolness

You might argue that coolness isn’t really the focus in many applications, and
you would be completely correct, but programmers who write skins aren’t usually
focused on getting by with the least possible work. It’s hard to argue that most skin-
ning serves anything other than an aesthetic purpose, so as long as you’re spending
extra effort providing skins, it’s not completely fair to say that the extra coolness of
animated skins isn’t worth the effort. By the same token, you could argue that you
shouldn’t even be using WPF and should stick with Windows Forms programming,
which is generally easier.

That being said, however, be warned that animating skins is a lot of work. Tweaking
the animations to give everything exactly the right position, size, and appearance
takes time. The AnimatedSkins example program uses only two storyboards (one for
each skin) but more than 100 property animations to get everything right. And the
differences between these two skins aren’t as great as some I’ve seen, so you could
spend a huge amount of time getting everything just right.

One interesting side effect of this technique is that one animation doesn’t need to finish before a
new animation can start. For example, suppose you click on the blue circle in Figure 16-9 to switch
to the blue skin. After the controls start moving to their new positions, you can click on the green
circle shown in Figure 16-10. At that point, the controls immediately start moving back to their
positions for the green skin without going all the way to their blue skin positions.

Figure 16-11

Copyright Wrox Press. Posted with permission.

Skins  ❘  297

Dynamically Loaded Skins
One of the drawbacks of the previous two skinning techniques is that they only modify existing
objects. They can display an Ellipse, Button, or Label with different properties, but they are still
the same Ellipse, Button, or Label. For example, you cannot provide one skin that launches tasks
with Buttons, another that uses Menus, and a third that uses Labels.

One common solution to this problem is to include every set of controls in every skin and then hide
the ones that you don’t need. For example, you would include Buttons, Menus, and Labels in every
skin. Then the button-oriented skin would hide the Menus and Labels, the menu-oriented skin would
hide the Buttons and Labels, and the label-oriented skin would hide the Buttons and Menus.

Another solution to this problem might be to use separate XAML files that sit on top of the same
code-behind. Unfortunately, WPF doesn’t handle this situation very well.

WPF provides methods for loading XAML files with or without event handlers attached. The short
version of the story is, if you want to load XAML code with event handlers, then you can only have
one XAML file associated with each code-behind class. If you load XAML code without event han-
dlers, then you need to wire up the event handlers yourself.

The Longer Story

If you want to load XAML files with event handlers, then you need to associate the
XAML with a class defined in your code-behind. Unfortunately, WPF adds its own
automatically generated bonus routines to perform some extra chores such as con-
necting the XAML events with the event handlers provided by your class. If you try
to associate two XAML files with the same class, WPF creates multiple copies of
those routines with the same signatures and that confuses Visual Studio.

You might try to make multiple classes for the XAML files by having them inherit
from a common base class that provides all of the necessary functionality. Sadly,
the automatically generated code makes your class inherit from a WPF control type.
For example, if your XAML file contains a Grid as its root element, then the code
makes your class inherit from the Grid class. That means that you cannot also make
it inherit from your desired base class.

The only direct solution I’ve found is to make completely separate classes for each
XAML file, but that kind of defeats the goal of trying to use common code-behind.

Wiring up events to event handlers isn’t hard, although it does reduce the separation between user
interface design and writing the code-behind. Now the interface designer and the programmer must
agree on the event handlers that the code will use and on the names of the controls that use them.

Copyright Wrox Press. Posted with permission.

298  ❘  Chapter 16   Themes and Skins

Interface Irony

The difficulty of attaching multiple XAML files to the same code-behind seems
somewhat ironic given how much emphasis WPF places on separation of user inter-
face and code-behind. You can separate an interface from its code but only as long
as you keep them logically associated with each other.

The SkinInterfaces example program dis-
plays new skins at run time by loading
XAML files and wiring up their event han-
dlers. Figures 16-12 and 16-13 show the
program displaying its two skins.

These skins not only provide radically differ-
ent appearances, but they also use different
types of controls that generate different kinds
of events. The following table lists the types of
controls and events that each skin uses:

Red Skin Blue Skin

Purpose Control Event Control Event

Switch skin Polygon MouseDown Ellipse MouseDown

Move form Rectangle MouseDown Ellipse MouseDown

Exit Grid (containing a
Rectangle and a
TextBlock)

MouseDown Grid (containing an
Ellipse and a
TextBlock)

MouseDown

Repair disk Button Click Grid (containing an
Ellipse and a
TextBlock)

MouseDown

Virus check Button Click Grid (containing an
Ellipse and a
TextBlock)

MouseDown

Format disk Button Click Grid (containing an
Ellipse and a
TextBlock)

MouseDown

When the program loads a XAML file, it looks through the new controls and attaches event han-
dlers to those that need them.

Figure 16-12 Figure 16-13

Copyright Wrox Press. Posted with permission.

Skins  ❘  299

To provide some separation between the XAML files and the code-behind, the program uses a sepa-
rate group of routines to do the real work. Event handlers catch the control events and call the work
routines to do all the interesting stuff.

The following code shows how the blue skin defines its red switch skin circle on the left at the
form’s top:

<Grid
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Tag=”Blue”
 >

 Lots of code omitted ...

 <Ellipse Name=”ellSkin” Width=”10” Height=”10”
 Canvas.Left=”70” Canvas.Top=”13”
 Cursor=”Cross” ToolTip=”Change Skin”
 Fill=”HotPink” Stroke=”{StaticResource brRedStroke}”
 StrokeThickness=”2” Tag=”Red.xaml”
 />

 Lots of code omitted ...

</Grid>

SkinInterfaces

The code fragment starts with a Grid control as its root element. (You can use other controls for
the file’s root, but Grid is convenient, partly because the Visual Studio WPF Window Designer can
understand how to display the file if its root is a Grid.) The root element’s Tag property is set to the
name of the skin it represents, in this case, Blue.

The code shown here omits all of the other controls except the “switch skin” circle.

The most important pieces of the circle’s definition are its name, ellSkin, and its Tag, Red.xaml.
The Tag property tells the code-behind which XAML skin file to load when the circle is clicked.

Ignoring for the moment how this control is wired up to its event handler, the following code
shows the event handler that the circle executes. Since this event handler is shared by this circle
and the red skin’s “change skin” polygon (the blue triangle in the upper-left corner), it’s called
pgnSkin_MouseDown.

private void pgnSkin_MouseDown(object sender, MouseButtonEventArgs e)
{
 FrameworkElement element = (FrameworkElement)sender;
 LoadSkin(element.Tag.ToString());
}

SkinInterfaces

This code gets the element that triggered the event (either the blue skin’s Ellipse or the red skin’s
Polygon), reads that element’s Tag property to see which XAML file to load, and passes the file-
name to the function LoadSkin.

Copyright Wrox Press. Posted with permission.

300  ❘  Chapter 16   Themes and Skins

The function LoadSkin uses the following code to load a XAML skin file. To save space, the code
only shows a few of the statements that connect controls to their event handlers.

// Load the skin file and wire up event handlers.
private void LoadSkin(string skin_file)
{
 // Load the controls.
 FrameworkElement element =
 (FrameworkElement)Application.LoadComponent(
 new Uri(skin_file, UriKind.Relative));
 this.Content = element;

 // Wire up the event handlers.
 Button btn;
 Polygon pgn;
 Rectangle rect;
 Grid grd;
 Ellipse ell;

 switch (element.Tag.ToString())
 {
 case “Red”:
 btn = (Button)element.FindName(“btnRepairDisk”);
 btn.Click += new RoutedEventHandler(btnRepairDisk_Click);

 Code for other controls omitted
 break;

 case “Blue”:
 Lots of code omitted

 // Uses the same event handler as rectMove.
 ell = (Ellipse)element.FindName(“ellMove”);
 ell.MouseDown +=
 new System.Windows.Input.MouseButtonEventHandler(
 rectMove_MouseDown);

 grd = (Grid)element.FindName(“grdExit”);
 grd.MouseDown +=
 new System.Windows.Input.MouseButtonEventHandler(
 grdExit_MouseDown);
 break;
 }
}

SkinInterfaces

The code starts by using the WPF LoadComponent method to load the desired XAML skin file. It sets
the Window’s main content element to the root loaded from the file so the new controls are displayed.

Next, the code checks the newly loaded root element’s Tag property to see whether it is now display-
ing the red or the blue skin. Depending on which skin is loaded, the code looks for specific controls
in the skin and connects their event handlers.

Copyright Wrox Press. Posted with permission.

Summary  ❘  301

For example, if the red skin is visible, the code uses FindName to locate the btnRepairDisk Button
and adds the btnRepairDisk_Click event handler to its Click event.

The previous code omits most of the code connecting controls to event handlers. It does, however, show
how the code finds the ellSkin control (the “change skin” circle) and adds the pgnSkin_MouseDown
event handler to its MouseDown event.

The code that wires up the controls that are not shown here is similar.

The program’s final piece is in the Window’s constructor, which is shown in the following code. After
the Window is initialized, the code calls LoadSkin to start with the red skin.

public Window1()
{
 this.InitializeComponent();

 // Insert code required on object creation below this point.

 // Start with the red skin.
 LoadSkin(“Red.xaml”);
}

SkinInterfaces

That completes the program’s circle of life. When the program starts, it calls LoadSkin to load the
red skin. LoadSkin loads the controls and wires up their event handlers. In particular, it attaches an
event handler to the pgnSkin “change skin” control’s MouseDown event. When you click on the poly-
gon, the pgnSkin_MouseDown event handler executes and calls LoadSkin to start the whole process
over again.

Despite the extra code-behind that locates specific controls and attaches events to event handlers,
this technique is reasonably straightforward. Wiring up the controls can be long, but it’s easy to
understand.

The skin files can set control properties directly instead of requiring that you use a huge number of
dynamic resources, so the code is a lot simpler than it is when you use different resource dictionaries.

This method doesn’t provide property animation, which makes it less cool, but it’s much easier to
implement.

Finally, this technique allows different skins to use different controls for similar purposes. It lets you
make skins that launch actions from Buttons, MenuItems, MouseDown events, and pretty much any
other event you might want to catch.

Summary

This chapter explains themes and skins. Themes let every application on the user’s computer provide
a similar look and feel. Normally, you don’t need to do anything to take advantage of themes. If you
don’t override the default appearance of controls, then they automatically match the system’s cur-
rently selected theme and update themselves as needed when the theme changes.

Copyright Wrox Press. Posted with permission.

302  ❘  Chapter 16   Themes and Skins

Skins let you change an application’s appearance and behavior, essentially letting you define a
“mini-theme” for the application. The examples in this chapter show how to use different skins for
different purposes, load skins at design time or run time, build animated skins, and load skins that
may use completely different controls.

Chapters 12 through 16 cover topics that control the application’s behavior and appearance. They
explain how to use resources, styles, templates, triggers, and themes to give an application a distinc-
tive and consistent look-and-feel. These techniques are useful for building any WPF application.

The chapters that follow turn to more specific topics that are not necessarily essential for every
application. These chapters explain important techniques that you will find useful in many applica-
tions. For example, Chapter 17 explains one of the more basic needs of many applications: printing.

Copyright Wrox Press. Posted with permission.

