
Templates
Properties and styles determine a control’s appearance and behavior. For example, a Slider
control’s TickFrequency, TickPlacement, Background, and Width properties help determine
its appearance, while its Minimum, Maximum, LargeChange, and IsEnabled properties help
determine its behavior.

In contrast, templates determine a control’s structure. They determine what components make
up the control and how those components interact to provide the control’s features.

This chapter describes templates in general terms and shows how you can build templates of
your own to change the way existing controls work.

TemplaTe Overview

If you look closely at Figure 15-1, you can see that
a Slider control has a bunch of parts including:

A border➤➤

Tick marks➤➤

A background➤➤

Clickable areas on the background (basically anywhere between the top of the control ➤➤

and its tick marks vertically) that change the current value

A Thumb indicating the current value that you can drag back and forth➤➤

Selection indicators (the little black triangles) that indicate a selected range➤➤

These features are provided by the pieces that make up the Slider. By default, a Slider is made
up of a multitude of Border, Grid, TickBar, Track, RepeatButton, Rectangle, Thumb, Canvas,
and Path controls, together with many brushes, transformations, styles, and triggers.

A template determines what the pieces are that make up a control. It determines the control’s
components together with their styles, triggers, and everything else that is needed by the con-
trol. As an analogy, consider a car. Its properties are easily changed — things like its color,

Figure 15-1

15

Copyright Wrox Press. Posted with permission.

264 ❘ ChapTer 15 TemplaTes

upholstery, and vanity plate (e.g., WPF FAN). Its template defines the things it is made of — for
example, its chassis, number of doors, and engine.

No matter what combination of properties and components you pick, however, it has certain stan-
dard car-like features such as turning on, accelerating, decelerating, turning off, and costing way
too much to insure. As you drive down the street, you will see hundreds of combinations, but they
are all easily recognizable as cars.

[OK, there may be a few that are hard to recognize such as the MULE robotic logistics vehicle
(www.botmag.com/articles/mule.shtml), the Terrafugia Transition flyable-car/roadable-plane
(www.theregister.co.uk/2008/07/29/terrafugia_transition_on_show_oshkosh), or the
Toyota PM (www.toyota.com/concept-vehicles/pm.html), which looks more like a Star Wars
pod racer than a car, but I have yet to see any of these on the road.]

Note that the components influence the behavior of the car. A hybrid has great fuel efficiency but
slow acceleration, while a 12-cylinder sports car has great acceleration but poor mileage. Similarly,
the components that make up a control can change the way it behaves.

Because the controls in the template determine the control’s appearance, WPF controls are some-
times called lookless. By creating your own template for an existing control such as a Button or
CheckBox, you can give the control a new appearance and behavior.

wOrk warning

Building a template can be a lot of work. When you build a template, you take
responsibility for most of the control’s behavior. You cannot make a Button
use a diamond-shaped polygon for its surface and expect it to automatically do
everything that a normal Button does. If you decide to use a template to make a
diamond-shaped Button, then you need to build most of the Button’s behaviors
yourself.

The Button still provides some very basic features such as raising a Click event
when the user clicks it, but you need to handle things such as changing the Button’s
appearance when the mouse is over it, when the user presses the mouse, when the
mouse moves off it, and so forth.

COnTenTpresenTer

If you’re assembling a new control from components of your own choosing, how do you handle the
essential features of the control? For example, if you’re building a template for Label controls, per-
haps displaying the text inside a Border with a beveled edge, how do you know what text to display?

The answer is the ContentProvider. The ContentProvider is an object that WPF provides to dis-
play whatever it is that the control should display. You can place the ContentProvider in whatever
control hierarchy you build for the template, and it will display the content.

Copyright Wrox Press. Posted with permission.

Template Binding ❘ 265

For example, the following code shows an extremely simple Label template:

<Window.Resources>
 <ControlTemplate x:Key=”temSimpleLabel” TargetType=”Label”>
 <Border BorderBrush=”Red” BorderThickness=”1”>
 <ContentPresenter/>
 </Border>
 </ControlTemplate>
</Window.Resources>

SimpleLabelTemplate

The template’s name is temSimpleLabel, and it applies to Label controls. The template contains a
Border control that displays a red border and that holds the ContentPresenter.

The following code shows how the program might use this template. This code creates a Label. Its
last attribute sets the control’s Template property to the previously created template.

<Label Margin=”5” Content=”No Template”
 HorizontalContentAlignment=”Right”
 VerticalContentAlignment=”Center”
 BorderBrush=”Yellow” BorderThickness=”2”
 Foreground=”{StaticResource brForeground}”
 Background=”{StaticResource brBackground}”
 Template=”{StaticResource temBorderLabel}”
/>

SimpleLabelTemplate

The SimpleLabelTemplate example program shown in
Figure 15-2 displays two Labels. The one on the left
uses no template, while the one on the right uses the
temSimpleLabel template.

TemplaTe Binding

If you compare the two Labels in Figure 15-2, you’ll see that even this simple example has some
potential problems. Because the template’s Border control includes explicit values for its BorderBrush
and BorderThickness properties, it overrides any values set in the code that creates the Label. The
Border control also doesn’t specify a Background, so it uses its default transparent background.

This means the templated control doesn’t display the correct background or border. It also doesn’t
honor the requested HorizontalContentAlignment and VerticalContentAlignment values.

Fortunately, a template can learn about some of the properties set on the client control by using a
template binding. For example, the following code fragment sets the Background property for a
piece of the template to the value set for the control’s Background property:

Background=”{TemplateBinding Background}”

Figure 15-2

Copyright Wrox Press. Posted with permission.

266 ❘ ChapTer 15 TemplaTes

Template bindings let the template honor values set for the control where appropriate while overrid-
ing other values to achieve the appearance you desire.

The following code shows a better version of the Label template that honors several of the control’s
background and foreground properties:

<ControlTemplate x:Key=”temBetterLabel” TargetType=”Label”>
 <Border
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <ContentPresenter Margin=”4”
 HorizontalAlignment=”{TemplateBinding HorizontalContentAlignment}”
 VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”/>
 </Border>
</ControlTemplate>

BetterLabelTemplate

In this template, the Border control mimics the client control’s Background, BorderBrush,
and BorderThickness properties. The ContentPresenter sets its HorizontalAlignment
and VerticalAlignment properties to the client control’s HorizontalContentAlignment and
VerticalContentAlignment values so that the result is properly aligned within the control.

The BetterLabelTemplate example program shown in
Figure 15-3 uses this template to display a Label that
looks much more like one that has no template.

So now that you can create a template Label that looks
like a regular Label, what’s the point? If you just want a
Label that looks like a Label, use a Label!

The point is that you don’t have to copy every feature of the original control. You can add bitmap
effects, rotate the label, insert an image, and make other changes. For example, the following sec-
tion describes two Label templates that add features not provided by the normal Label control.

Changing COnTrOl appearanCe

Of course, you won’t always want your template to match exactly the appearance of a control with-
out a template. If you did, you wouldn’t bother going to all the trouble of making a template.

Your template will override properties, implement new behaviors, and build the template from con-
trols other than those used by the original control to provide a unique experience.

The InterestingLabelTemplates example program
shown in Figure 15-4 demonstrates two more interest-
ing Label templates. The first draws a double border
around its text if the Label specifies BorderBrush and
BorderThickness properties. The second can display
text wrapped across multiple lines.

Figure 15-3

Figure 15-4

Copyright Wrox Press. Posted with permission.

Changing Control Appearance ❘ 267

The following code shows how the InterestingLabelTemplates program displays its Label with a
double border:

<ControlTemplate x:Key=”temDoubleBorderLabel” TargetType=”Label”>
 <Border Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <Border Margin=”2” Background=”Transparent”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <ContentPresenter Margin=”2”
 HorizontalAlignment=”Center”
 VerticalAlignment=”{TemplateBinding VerticalContentAlignment}”/>
 </Border>
 </Border>
</ControlTemplate>

InterestingLabelTemplates

This template displays a Border control that matches the client control’s Background, BorderBrush,
and BorderThickness properties.

Inside that is another Border control with its Margin set to 2, so it sits inside the first Border. Its
Background is set to Transparent, so it doesn’t cover the background used by the outer Border,
although the inner Border also obeys the client’s BorderBrush and BorderThickness properties.

Finally, inside the inner Border, the ContentPresenter displays the client’s content as before.

The following code shows how the program displays its second Label with wrapped text:

<ControlTemplate x:Key=”temWrappedLabel” TargetType=”Label”>
 <Grid>
 <Border
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <TextBlock Name=”txtbContent”
 Margin=”4”
 TextWrapping=”Wrap”
 Text=”{TemplateBinding ContentPresenter.Content}”/>
 </Border>
 </Grid>
</ControlTemplate>

InterestingLabelTemplates

This template displays a Border as before. The Border contains a TextBlock with
TextWrapping = True, so it wraps its content if necessary. The TextBlock’s Text property is
set to the ContentPresenter’s Content property.

Copyright Wrox Press. Posted with permission.

268 ❘ ChapTer 15 TemplaTes

Note that this only works if the ContentPresenter is trying to display text. For example, if you
build the client Label control so that it contains a Button as shown in the following code, then the
TextBlock doesn’t display anything:

<Label Margin=”5”
 HorizontalContentAlignment=”Right”
 VerticalContentAlignment=”Center”
 BorderBrush=”Yellow” BorderThickness=”2”
 Foreground=”{StaticResource brForeground}”
 Background=”{StaticResource brBackground}”
 Template=”{StaticResource temWrappedLabel}”
>
 <Button Content=”Click Me”/>
</Label>

InterestingLabelTemplates

TemplaTe evenTs

The Label control used in the previous example is one of the simplest controls. It mostly just sits
there looking pretty without bothering to interact with the user.

But more complicated controls like Button, CheckBox, and Slider must perform all sorts of stunts
as the mouse moves, presses, drags, and releases over them.

To make a template control respond to events, you can add property and event triggers to the tem-
plate much as you added them to styles in Chapters 13 and 14.

In addition to events caused by user actions such as moving or pressing the mouse, controls must
respond to changes in state. For example, although a Label mostly just sits around doing nothing, it
should also change its appearance when it is disabled. If you don’t need to display complex animations,
then it can simply respond with Setters in a property
Trigger that runs when the IsEnabled property is False.

The DisabledLabelTemplate example program shown in
Figure 15-5 uses a template that gives a disabled Label a
distinctive appearance.

The following code shows the template that gives the
disabled Label its appearance:

<ControlTemplate x:Key=”temWrappedLabel” TargetType=”Label”>
 <Grid>
 <Border Name=”brdMain”
 Background=”{TemplateBinding Background}”
 BorderBrush=”{TemplateBinding BorderBrush}”
 BorderThickness=”{TemplateBinding BorderThickness}”>
 <TextBlock Name=”txtbContent”
 Margin=”4”
 TextWrapping=”Wrap”
 Text=”{TemplateBinding ContentPresenter.Content}”/>
 </Border>
 <Canvas Name=”canDisabled” Opacity=”0”>

Figure 15-5

Copyright Wrox Press. Posted with permission.

Template Events ❘ 269

 <Canvas.Background>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”3,3”
 MappingMode=”Absolute”
 SpreadMethod=”Repeat”>
 <GradientStop Color=”LightGray” Offset=”0”/>
 <GradientStop Color=”Black” Offset=”1”/>
 </LinearGradientBrush>
 </Canvas.Background>
 </Canvas>
 </Grid>
 <ControlTemplate.Triggers>
 <Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”canDisabled”
 Property=”Opacity” Value=”0.5”/>
 <Setter TargetName=”txtbContent”
 Property=”Foreground” Value=”Gray”/>
 </Trigger>
 </ControlTemplate.Triggers>
</ControlTemplate>

DisabledLabelTemplate

This version of the Template starts with a Grid control that contains a Border and a Canvas. The
Border holds a TextBlock that displays the control’s ContentPresenter as before. The Canvas cov-
ers the Border, is filled with a linear gradient brush, and initially has Opacity = 0 so it is invisible.

The template’s Triggers section contains a property trigger that activates when the control’s IsEnabled
property is False. When that happens, the trigger sets the Canvas’s Opacity property to 0.5 so it par-
tially obscures the control’s content. It also changes the TextBlock’s Foreground to Gray.

TemplaTe TriCks 1

Using a control with Opacity = 0 is a common and particularly useful template
trick. The template can use it to display something new, cover something old, or, as
in this example, partially obscure whatever lies behind it.

You can use a translucent white control to wash out whatever is behind, a translu-
cent black control to darken whatever is behind, or an opaque control to cover the
background controls completely.

TemplaTe TriCks 2

It’s easier for triggers to manipulate the template’s controls and other objects if you
give those objects names. In this example, the TextBlock is named txtbContent
and the translucent Canvas is named canDisabled, so it’s easy for the triggers to
control them. If you’ll need to animate it, give it a name.

The following sections describe some much more complex templates that change the way Buttons work.

Copyright Wrox Press. Posted with permission.

270 ❘ ChapTer 15 TemplaTes

glass BuTTOn

The GlassButton example program shown in Figure 15-6 uses a template to give its buttons a glassy
appearance.

Figure 15-6

The disabled button on the left looks washed-out and doesn’t respond to the user.

The second button labeled Default has a different border from that of the other buttons. If no other
button has the focus when the user presses the [Enter] key, that Button fires its Click event. In
Figure 15-6, the TextBox has the focus, so pressing the [Enter] key will fire the default Button.

designaTed deFaulT

Just because a Button’s IsDefault property is True, that doesn’t mean that
the Button always fires when the user presses [Enter]. If the focus is on another
Button, then the [Enter] key fires that Button instead of the default.

Also, when the default Button has the focus, it behaves like any other Button with
the focus, so it is not acting as the default Button at that time.

When a Button is acting as the default, it is said to be defaulted. You (or, more
importantly, your triggers) can see whether a Button is defaulted by checking its
IsDefaulted property.

Figure 15-7 shows the program when the mouse is over Button 3. The button under the mouse
becomes less transparent. Notice that the focus is still in the TextBox (you can see the caret in
Figure 15-7), so the default button still shows its distinctive border.

Figure 15-7

Copyright Wrox Press. Posted with permission.

Glass Button ❘ 271

Figure 15-8 shows the program when the user presses the mouse down on Button 3.

Figure 15-8

At this point, the pressed button is opaque. Pressing the button also moves focus to that button.
Because focus is now on Button 3, the default button is no longer defaulted. In fact, no button is
defaulted right now. Button 3 has the focus so it will fire if the user presses [Enter] but it is not
defaulted so it won’t display the default border even after the user releases the mouse.

If you drag the mouse off the button while it is still pressed, the button returns to its focused
“mouse over” appearance. If you then release the mouse, no mouse click occurs.The following
three sections describe the glass button’s Template. The first describes the Template at a high level,
explaining the controls the Template uses and how they fit together. The two sections that follow
describe the Template’s Styles and Triggers.

This program is fairly long so the complete code isn’t shown in these sections. You
can download the example program from the book’s web site to see the details.

glass Button Template Overview
The following code snippet shows the Template’s main sections and the controls that it uses.

<ControlTemplate x:Key=”temGlassButton” TargetType=”Button”>
 <ControlTemplate.Resources>
 ... Template Styles omitted here...
 </ControlTemplate.Resources>

 <Grid Name=”grdMain” ClipToBounds=”True” Opacity=”0.5”
 Width=”{TemplateBinding Width}”
 Height=”{TemplateBinding Height}”>
 <Rectangle Name=”rectMain”/>

 <ContentPresenter
 VerticalAlignment=”Center”
 HorizontalAlignment=”Center”/>
 </Grid>

 <!-- Behaviors. -->

Copyright Wrox Press. Posted with permission.

272 ❘ ChapTer 15 TemplaTes

 <ControlTemplate.Triggers>
 ... Template triggers omitted here...
 </ControlTemplate.Triggers>
</ControlTemplate>

GlassButton

The Template’s controls are relatively simple. The Template contains a Grid that holds a
Rectangle and the ContentPresenter. The ContentPresenter’s attributes center it on the
Button, but all of the other interesting properties are set in the Template’s Styles.

glass Button styles
The following code shows the Styles defined in the template’s Resources section. The Button looks
differently when it is in the three states (normal, defaulted, and disabled). To make the code easier to
understand, the template uses three different Styles for those states. The code also includes a base
Style from which the others inherit.

<!-- Base style that sets corner radii and stroke thickness. -->
<Style x:Key=”styBase” TargetType=”Rectangle”>
 <Setter Property=”RadiusX” Value=”20”/>
 <Setter Property=”RadiusY” Value=”20”/>
 <Setter Property=”StrokeThickness” Value=”5”/>
</Style>

<!-- Style for “normal” status. -->
<Style TargetType=”Rectangle”
 BasedOn=”{StaticResource styBase}”>
 <Setter Property=”Fill”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”0”/>
 <GradientStop Color=”LightGreen” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Stroke”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”1”/>
 <GradientStop Color=”LightGreen” Offset=”0”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

<!-- Style when IsDefaulted. -->
<Style x:Key=”styIsDefaulted” TargetType=”Rectangle”
 BasedOn=”{StaticResource styBase}”>
 <Setter Property=”Fill”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”0”/>

Copyright Wrox Press. Posted with permission.

Glass Button ❘ 273

 <GradientStop Color=”LightGreen” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Stroke”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”DarkGreen” Offset=”1”/>
 <GradientStop Color=”Black” Offset=”0”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

<!-- Style when disabled. -->
<Style x:Key=”styDisabled” TargetType=”Rectangle”
 BasedOn=”{StaticResource styBase}”>
 <Setter Property=”Opacity” Value=”0.75”/>
 <Setter Property=”Fill”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Gray” Offset=”0”/>
 <GradientStop Color=”White” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”Stroke”>
 <Setter.Value>
 <LinearGradientBrush StartPoint=”0,0” EndPoint=”0,1”>
 <GradientStop Color=”Gray” Offset=”1”/>
 <GradientStop Color=”White” Offset=”0”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
</Style>

GlassButton

The first Style is a base Style that sets the Rectangle’s RadiusX, RadiusY, and StrokeThickness
properties. These properties are the same for all of the Button’s states.

Since the Button’s “normal” Style is an unnamed Rectangle Style, it always applies unless some
other Style overrides it. It sets the control’s Fill property to a LinearGradientBrush that shades
from dark green to light green. The Style then sets the Stroke property to a brush that does the
opposite: It shades from light green to dark green. (This remarkably simple technique gives the
Button an easy 3D appearance.)

The “defaulted” Style uses the same Fill property but makes the Stroke brush shade from dark
green to black. (The difference is actually fairly subtle. You might want to experiment with larger
changes, perhaps adding a completely black outline.)

The “disabled” Style sets the Rectangle’s Opacity property to 0.75, so it is translucent. It also
changes the Rectangle’s Fill and Stroke properties to shade between gray and white.

Copyright Wrox Press. Posted with permission.

274 ❘ ChapTer 15 TemplaTes

glass Button Triggers
The following code shows the Template’s Triggers. In response to events and changes in the con-
trol’s properties, the Triggers set new property values and apply the Styles.

<!-- Mouse over. -->
<Trigger Property=”IsMouseOver” Value=”True”>
 <Setter TargetName=”grdMain” Property=”Opacity”
 Value=”0.75”/>
</Trigger>

<!-- Focus. -->
<Trigger Property=”IsFocused” Value=”True”>
 <Setter TargetName=”grdMain” Property=”Opacity”
 Value=”0.75”/>
</Trigger>

<!-- Defaulted. -->
<Trigger Property=”IsDefaulted” Value=”True”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styIsDefaulted}”/>
</Trigger>

<!-- Pressed. This comes after Focus so it gets precedence. -->
<Trigger Property=”IsPressed” Value=”True”>
 <Setter TargetName=”grdMain” Property=”Opacity”
 Value=”1”/>
</Trigger>

<!-- Disabled. This comes last so it gets ultimate precedence. -->
<Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”rectMain” Property=”Style”
 Value=”{StaticResource styDisabled}”/>
</Trigger>

GlassButton

When the control’s IsMouseOver property is True, the first trigger sets the Grid’s Opacity property
to 0.75. This is more opaque than the original value of 0.5, so the control becomes more solid.

When the control receives the focus, the second trigger also sets the Grid’s Opacity property to 0.75.

When the control’s IsDefaulted property is True, the next trigger sets the Rectangle’s Style to the
“defaulted” Style.

When the IsPressed property is True, the following trigger sets the Grid’s Opacity to 1, making it
fully opaque.

Finally, when the control’s IsEnabled property is False, the last trigger sets the Rectangle’s Style
to the “disabled” Style. The Button control automatically stops interacting with the user, so you
don’t need to worry about that.

Copyright Wrox Press. Posted with permission.

Ellipse Button ❘ 275

impOrTanT Order

Notice that the order of the template’s triggers is important. Triggers that are
defined later are applied later — if two triggers are active at the same time, the sec-
ond trigger overrides the first.

In this example, the IsPressed trigger must come after the IsMouseOver trigger.
Otherwise, when the user pressed the mouse on the Button, the IsPressed trigger
would occur first. But at that point, since the mouse would be over the Button, the
IsMouseOver trigger would also apply and would override the IsPressed trigger
so that the user would never see the Button look pressed.

Similarly the IsEnabled trigger comes last so it overrides all other triggers. If the
button is disabled, it should never display any of the other appearances.

ellipse BuTTOn

The EllipseButton example program shown in Figure 15-9 uses a template to make an elliptical but-
ton that is very different from the glass button described in the preceding section.

Figure 15-9

The disabled button on the left is paler than the others and doesn’t respond to the user.

The defaulted button is brighter than the others and displays a yellow highlight along its border.

Figure 15-10 shows the program when the mouse is over Button 3. The button under the mouse is
even brighter than the defaulted button and displays a yellow glow under its text.

Figure 15-10

Copyright Wrox Press. Posted with permission.

276 ❘ ChapTer 15 TemplaTes

It’s difficult to see, but the button under the mouse in Figure 15-10 also displays an extra white
highlight in its border roughly above the number 3. Every second, that highlight makes a trip
around the button’s circumference to draw the user’s attention to the button. It’s a small highlight,
so the effect is fairly subtle.

animaTiOn adviCe

Motion is one of the most attention-grabbing effects you can add to a program,
but it can also be the most distracting and annoying. A button that flashes bright
colors or continually changes size while the mouse is over it would really annoy
users. The moving highlight that the EllipseButton program displays is subtle so the
effect isn’t too bad, but be careful. Keep animations like this one subtle or make
them play only once — for example, when the mouse first enters the button, so
you don’t drive your users crazy. In extreme cases, rapidly flashing lights can even
induce seizures in some people so don’t use areas that flash brightly, particularly at
frequencies between 2 and 55 Hz. Better still, give users a way to disable these sorts
of animations.

Also note that users with special needs such as color vision deficiency or visual
impairment may not see subtle animations very well or at all. Don’t rely solely on
subtle animations to give the user information.

Figure 15-11 shows the program when the user presses the mouse down on a button.

Figure 15-11

When you press a button, its background shifts slightly, and it displays a larger glow under its text.

If you drag the mouse off the button while it is still pressed, the button returns to its focused
“mouse over” appearance. If you then release the mouse, no mouse click occurs.

The following two sections describe the ellipse button’s Template. The first section describes the
Template at a high level, explaining the controls the Template uses and how they fit together. The
next section describes the Template’s Triggers.

This program is fairly long so the complete code isn’t shown in these sections. You
can download the example program from the book’s web site to see the details.

Copyright Wrox Press. Posted with permission.

Ellipse Button ❘ 277

ellipse Button Controls
Figure 15-12 shows the template’s control
structure. The controls’ labels are shown in
left-to-right and top-to-bottom order, so you
can tell which controls are defined by the
XAML code before the others. For example,
the “Inner surface” is defined in the XAML
code before the “Outer edge.”

A Grid (shown as a yellow dashed box) con-
tains all of the other controls, most of which are
Ellipses.

The inner surface is an ellipse filled with a
brush that shades from lime to green. It lies
beneath all of the other visible controls.

The outer edge is an ellipse with a trans-
parent center and a black edge. Because its
StrokeThickness is 10, it forms a wide band
around the control.

The edge highlight is an ellipse with Margin = 4 and StrokeThickness = 4, forming a band within
the outer edge. It has a transparent center. Its Stroke property is a gradient brush that shades from
lime on the left, to transparent in the middle, to lime again on the right; thus this ellipse makes two
highlights on the edge. Its BitmapEffect property is set to a BlurBitmapEffect object, so it’s fuzzy,
giving the edge a rounded, 3D appearance.

The sparkle highlight isn’t shown in Figure 15-12. It is similar to the green edge highlight except
that it’s white and only has one visible piece instead of two. It is only visible when the mouse is over
the control and it is animated.

The upper-left highlight is an ellipse filled with a brush that shades from white to transparent. Since
its Margin property is set to 12,12,20,20, it is offset a bit toward the upper left.

The lower-right highlight is shown in Figure 15-12 as a dashed ellipse because it has Opacity = 0,
making in invisible. It is displayed when the user presses the button. If you look closely, you can see
it in Figure 15-11. Like the upper-left highlight, this ellipse shades from white to transparent but is
centered with a Margin value of 15.

The ContentPresenter is centered in the Template’s Grid.

The final Template control is a light gray Ellipse that covers everything. Its Opacity is 0.3 and
thus it tones down the colors of all of the other controls.

Many of the controls have Opacity less than 1, so they are semitransparent. When the control
changes state — for example, when the mouse is over the button or the user presses the but-
ton — the template’s Triggers change the Opacity of the controls to give the Button a different
appearance.

Grid
Inner

surface
Outer
edge

Edge
highlight

Upper left
highlight

Lower right
highlight

ContentPresenter

Figure 15-12

Copyright Wrox Press. Posted with permission.

278 ❘ ChapTer 15 TemplaTes

ellipse Button Triggers
When events occur, the template’s triggers make appropriate changes to the control’s appearance.
Mostly these changes involve changing Opacity values to make some controls more visible while
hiding others.

The IsMouseOver property trigger shown in the following code is the most interesting of the tem-
plate’s triggers:

<Trigger Property=”IsMouseOver” Value=”True”>
 <Setter TargetName=”ellUpperLeftHighlight” Property=”Opacity” Value=”1”/>
 <Setter TargetName=”ellCover” Property=”Opacity” Value=”0”/>
 <Setter TargetName=”cpContent” Property=”Opacity” Value=”1”/>
 <Setter TargetName=”cpContent” Property=”BitmapEffect”
 Value=”{StaticResource bmeMouseOver}”/>
 <Setter TargetName=”ellSparkle” Property=”Opacity” Value=”0.75”/>

 <!-- Start the sparkle animation. -->
 <Trigger.EnterActions>
 <BeginStoryboard Name=”begSparkle”>
 <Storyboard BeginTime=”0:0:1” RepeatBehavior=”Forever” >
 <DoubleAnimationUsingKeyFrames
 Duration=”0:0:2”
 Storyboard.TargetName=”transSparkle”
 Storyboard.TargetProperty=”Angle”>
 <LinearDoubleKeyFrame
 Value=”0” KeyTime=”0:0:0”/>
 <LinearDoubleKeyFrame
 Value=”360” KeyTime=”0:0:1”/>
 <LinearDoubleKeyFrame
 Value=”360” KeyTime=”0:0:2”/>
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </BeginStoryboard>
 </Trigger.EnterActions>

 <!-- Stop the sparkle animation. -->
 <Trigger.ExitActions>
 <StopStoryboard BeginStoryboardName=”begSparkle”/>
 </Trigger.ExitActions>
</Trigger>

EllipseButton

This code uses simple setters to do the following immediately when it starts:

Make the upper-left highlight fully opaque instead of translucent.➤➤

Make the light gray cover that tones down the other controls transparent so that all of the ➤➤

other controls have their full brightness.

Make the ➤➤ ContentPresenter fully opaque instead of translucent.

Copyright Wrox Press. Posted with permission.

Ellipse Button ❘ 279

Give the ➤➤ ContentPresenter an OuterGlowBitmapEffect (defined in the template’s
Resources section).

Make the white sparkle highlight visible with ➤➤ Opacity = 0.75. This makes the left edge
highlight brighter than the right edge highlight and prepares the sparkle for the animation
described next.

The Trigger’s EnterActions occur when the IsMouseOver property becomes True. This code begins
a Storyboard that uses a DoubleAnimationUsingKeyFrames object to animate the sparkle highlight’s
brush. The brush has a RotateTransform named transSparkle that initially has Angle = 0, so the
brush is not rotated. The animation makes Angle sweep from 0 to 360 degrees over a 1-second period.
It holds Angle at 360 degrees for another second to make the animation pause. The Storyboard then
repeats indefinitely.

The Trigger’s ExitActions occur when the IsMouseOver property becomes no longer True (in
other words, becomes False). When that happens, the code stops the Storyboard that animates
the sparkle brush.

The Template’s other triggers are much simpler. For example, the following code shows the IsPressed
property trigger that executes when the user presses the button:

<Trigger Property=”IsPressed” Value=”True”>
 <Setter TargetName=”ellUpperLeftHighlight” Property=”Opacity” Value=”0”/>
 <Setter TargetName=”ellLowerRightHighlight” Property=”Opacity” Value=”0.75”/>
 <Setter TargetName=”cpContent” Property=”BitmapEffect”
 Value=”{StaticResource bmePressed}”/>
</Trigger>

EllipseButton

This code uses simple setters to do the following:

Hide the upper-left highlight by setting ➤➤ Opacity = 0.

Display the lower-right highlight by setting ➤➤ Opacity = 0.75.

Give the ➤➤ ContentPresenter the OuterGlowBitmapEffect named bmePressed. This
effect, which is defined in the template’s Resources section, uses a larger GlowSize than the
bmeMouseOver effect, so the glow behind the ContentPresenter is larger. You can see the
difference if you carefully compare Figures 15-10 and 15-11.

The template’s other triggers shown in the following code work similarly:

<!-- Defaulted. -->
<Trigger Property=”IsDefaulted” Value=”True”>
 <Setter TargetName=”ellCover” Property=”Opacity” Value=”0.15”/>
 <Setter TargetName=”ellEdgeHighlight” Property=”Stroke”
 Value=”{StaticResource brDefaultedEdgeHighlight}”/>
</Trigger>

<!-- Not defaulted. -->

Copyright Wrox Press. Posted with permission.

280 ❘ ChapTer 15 TemplaTes

<Trigger Property=”IsDefaulted” Value=”False”>
 <Setter TargetName=”ellEdgeHighlight” Property=”Stroke”
 Value=”{StaticResource brEdgeHighlight}”/>
</Trigger>

<!-- Disabled. This comes last so it gets ultimate precedence. -->
<Trigger Property=”IsEnabled” Value=”False”>
 <Setter TargetName=”ellCover” Property=”Opacity” Value=”0.6”/>
</Trigger>

EllipseButton

These triggers are fairly straightforward, giving controls new Stroke values and shuffling around
Opacity values.

TemplaTe TriCks 3

The EllipseButton example demonstrates several useful template tricks including:

Using ➤➤ BlurBitmapEffect to make an object appear three-dimensional (the
outer edge with the blurred edge highlight on it)

Using ➤➤ Opacity <1 to make translucent highlights

Using brushes that blend from a color to transparent to make highlights fade ➤➤

away

Using brushes that blend from a color to transparent and back to a color to ➤➤

make objects that are visible in multiple places

Using different brushes for different control states (the normal vs. defaulted ➤➤

highlights)

Using different ➤➤ BitmapEffects for different control states (the smaller glow
for IsMouseOver and the larger glow for IsPressed)

Animating changes to a brush’s transformation➤➤

researChing COnTrOl TemplaTes

To effectively build templates, you need to learn what behaviors the control provides for you and
what behaviors you need to provide for it. You also need to determine what events the control pro-
vides so that you know when you have a chance to make the control take action.

For example, WPF provides a confusing assortment of mouse events including Mouse.MouseEnter,
IsMouseOver, MouseLeftButtonDown, Pressed, and Click. If you’re trying to write a Button tem-
plate, which mouse events can you use to change the Button’s appearance? Which properties and
behaviors does the Button provide for you, and which do you need to implement?

Copyright Wrox Press. Posted with permission.

Researching Control Templates ❘ 281

The Button templates described in the previous sections use the Button’s IsMouseOver, IsPressed,
IsEnabled, IsFocused, and IsDefaulted properties. The Button class provides these no matter
what controls you add to the template to provide basic Button behavior.

As described in the “Template Binding” section earlier in this chapter, templates can also read some
of the property values provided by the underlying control. For example, the Button class provides
Background, BorderBrush, and BorderThickness properties that a template can read by using tem-
plate bindings. Button also inherits properties such as Width and Height that you can also read with
template bindings.

So, how do you learn what properties and template bindings are available?

One good source of information is Microsoft’s “Control Styles and Templates” web page at
msdn.microsoft.com/cc278075(VS.95).aspx. That page provides links to other pages that
describe the features available to different control templates.

For example, the “Button Styles and Templates” page lists the Button’s states and properties and
tells where it gets them. For instance, the Pressed state (which you can read with the IsPressed
property) tells when the button is pressed.

These web pages also show the default templates used by the controls. The Button control’s default
template is 84 lines long and fairly complicated. Some are much longer and much more complex.

In addition to using Microsoft’s web pages, you can make a control tell you about its template. The
ShowTemplate example program shown in Figure 15-13 displays the default template for a control.
When you click on the “Show Template” button, the program displays the default template for the
control named Target. In Figure 15-13, that control is the Slider in the upper-left corner. To see
the template used by a different kind of control, replace the Slider with a different control, name it
Target, and run the program.

Figure 15-13

Copyright Wrox Press. Posted with permission.

282 ❘ ChapTer 15 TemplaTes

The ShowTemplate program uses the following code to display the Target control’s template:

private void btnShowTemplate_Click(object sender, RoutedEventArgs e)
{
 XmlWriterSettings writer_settings = new XmlWriterSettings();
 writer_settings.Indent = true;
 writer_settings.IndentChars = “ “;
 writer_settings.NewLineOnAttributes = true;

 StringBuilder sb = new StringBuilder();
 XmlWriter xml_writer = XmlWriter.Create(sb, writer_settings);

 XamlWriter.Save(Target.Template, xml_writer);

 txtResult.Text = sb.ToString();
}

ShowTemplate

The key to this code is the XamlWriter class, which includes methods that extract XAML from a
WPF object such as a control or template.

The code starts by initializing an XmlWriterSettings object to make the writer produce nicely
formatted output. If you don’t do this, the code comes out in one long line of XML without carriage
returns or indentation.

The program then creates a StringBuilder to hold the result text. It uses the writer settings to cre-
ate an XmlWriter attached to the StringBuilder.

The code then calls the XamlWriter class’s static Save method to write a XAML representation of
the Target control’s Template property into the StringBuilder.

The program finishes by displaying the result in its TextBox txtResult.

After you find a control’s default template, you can modify it to make your own template that
changes the control’s appearance. That lets you ensure that your template behaves the same way the
default template does except in those places where you want changes.

summary

Properties and styles let you change a control’s appearance in superficial ways. Templates let you
change a control more fundamentally, altering the pieces that make up the control and changing
the way it responds to events and changes in property values. By using templates, you can give your
applications a distinctive look and feel.

The next chapter explains two topics closely related to styles and templates: themes and skins. Skins
let an application change its entire appearance, sometimes radically. They let you change the appli-
cation to suit your immediate need or even your mood.

Themes provide a unifying appearance across controls, windows, and even separate applications. By
providing a common look and feel, themes can make even unrelated programs seem to fit together in
a single system.

Copyright Wrox Press. Posted with permission.

