
21
 LINQ

 LINQ (Language Integrated Query, pronounced “ link ”) is a data selection mechanism
designed to give programs the ability to select data in the same way from any data source.
Ideally the program would be able to use exactly the same method to fetch data whether it ’ s
stored in arrays, lists, relational databases, XML data, Excel worksheets, or some other data
store. Currently the LINQ API supports data stored in relational databases, objects within the
program stored in arrays or lists, and XML data.

 LOTS OF LINQ

This chapter only covers the default LINQ providers included with Visual Basic,
but you can build providers to make LINQ work with just about anything.
For a list of some third party LINQ providers to Google, Amazon, Excel,
Active Directory, and more, see rshelton.com/archive/2008/07/11/list - of -
 linq - providers.aspx.

 LINQ is a complex topic. LINQ provides dozens of extension methods that apply to all sorts
of objects that hold data such as arrays, dictionaries, and lists. Visual Basic provides a LINQ
query syntax that converts SQL - like queries into calls to LINQ functions.

 LINQ tools are divided into the three categories summarized in the following list:

 LINQ to Objects refers to LINQ functions that interact with Visual Basic objects such
as arrays, dictionaries, and lists. Most of this chapter presents examples using these
kinds of objects to demonstrate LINQ concepts.

 LINQ to XML refers to LINQ features that read and write XML data. Using LINQ,
you can easily move data between XML hierarchies and other Visual Basic objects.

 LINQ to ADO.NET refers to LINQ features that let you write LINQ - style queries to
extract data from relational databases.

➤

➤

➤

c21.indd 473c21.indd 473 12/31/09 6:44:48 PM12/31/09 6:44:48 PM

Copyright Wrox Press. Posted with permission.

474 ❘ CHAPTER 21 LINQ

 The fi rst section, “ Introduction to LINQ, ” provides an intuitive introduction to LINQ. Many of the
details about LINQ functions are so complex and technical that they can be hard to understand, but
the basic ideas are really quite simple. The introduction gives examples that demonstrate the essen-
tial concepts to try to give you an understanding of the basics.

 The section “ Basic LINQ Query Syntax ” describes the most useful LINQ query commands. These
let you perform complex queries that select, fi lter, and arrange data taken from program objects.
The next section, “ Advanced LINQ Query Syntax, ” describes additional LINQ query commands.

 “ LINQ Functions ” describes functions that are provided by LINQ but that are not supported by
Visual Basic ’ s LINQ query syntax. To use these functions, you must apply them to the arrays, dic-
tionaries, lists, and other objects that they extend.

 “ LINQ Extension Methods ” explains how LINQ extends objects such as arrays, dictionaries, and
lists. It describes method - based queries and explains how you can write your own extensions to
increase the power of method - based queries.

 After describing the tools provided by LINQ, most of the rest of the chapter describes the three
main categories of LINQ usage: LINQ to Objects, LINQ to XML, and LINQ to ADO.NET. The
chapter fi nishes by describing Parallel LINQ (PLINQ).

 LINQ to Objects is a bit easier to cover effectively than LINQ to XML and LINQ to ADO.NET
because it doesn ’ t require that you have any special knowledge beyond Visual Basic itself. To under-
stand LINQ to XML properly, you need to understand XML, which is a complex topic in its own
right. Similarly, to get the most out of LINQ to ADO.NET, you need to understand relational data-
bases such as SQL Server, a huge topic about which many books have been written.

 Because LINQ to Objects is easiest to cover, this chapter focuses mostly on it, and most of the
examples throughout the chapter deal with LINQ to Objects. The fi nal sections of the chapter do
provide some information about LINQ to XML and LINQ to ADO.NET, however, to give you an
idea of what is possible in those arenas.

 The book ’ s web site contains 20 example programs that demonstrate the techniques described in
this chapter.

 INTRODUCTION TO LINQ

 The LINQ API provides relatively low - level access to data in these storage formats. Visual Basic
 provides a higher - level layer above the LINQ API that makes querying data sources easier. This
higher - level layer uses query expressions to defi ne the data that should be selected from a data
source. These expressions use a SQL - like syntax so they will be familiar to developers who have
worked with relational databases.

 For example, suppose a program defi nes a Customer class that provides typical customer properties
such as Name, Phone, StreetAddress, AccountBalance, and so forth. Suppose also that the list
all_customers holds all of the application ’ s Customer objects. Then the following expression
defi nes a query that selects customers with negative account balances. The results are ordered by
balance in ascending order so customers with the most negative balances (who owe the most) are
listed fi rst. (Example program LinqLambda, which is available for download on the book ’ s web site,
defi nes a simple Customer class and performs a similar query.)

c21.indd 474c21.indd 474 12/31/09 6:44:51 PM12/31/09 6:44:51 PM

Copyright Wrox Press. Posted with permission.

Dim overdue_custs =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance Ascending
 Select cust.Name, cust.AccountBalance

code snippet LinqLambda

 Behind the scenes, Visual Basic transforms the query expression into calls to the LINQ API
and fetches the selected data. The program can then loop through the results as shown in the
 following code:

For Each cust In overdue_custs
 Debug.WriteLine(cust.Name & ": " & cust.AccountBalance)
Next cust

 There are a couple of interesting things to note about this code. First, the previous code fragments
do not declare data types for the expression or the looping variable cust in the For Each loop. The
data types for both of these variables are inferred automatically by Visual Basic. If you stop the pro-
gram while it is executing and use the TypeName function to see what types these variables have,
you ’ ll fi nd that they have the following ungainly names:

 < SelectIterator > d__b(Of Customer,VB$AnonymousType_0(Of String,Decimal))
VB$AnonymousType_0(Of String,Decimal)

 The fi rst line of this gibberish means the overdue_custs query result is an iterator that loops
through Customer objects and returns objects of an anonymous type (which is internally named
VB$AnonymousType_0) that contains String and Decimal fi elds. The second line indicates that the
 cust variable used in the For Each loop has the same anonymous type VB$AnonymousType_0.

 Because these variables have such awkward names, you don ’ t really want to try to guess them. It ’ s
much easier to leave Option Infer on and let Visual Basic infer them for you.

 In fact, as the previous code fragments show, you never even need to know what these data types
are. The code can defi ne the query without declaring its types, and the For Each loop can iterate
through the results without knowing the data type of the looping variable.

 Because the code doesn ’ t need to know what these data types really are, they are called
anonymous types.

 A second interesting fact about this code is that the program doesn ’ t actually fetch any data when
the query expression is defi ned. It only accesses the data source (in this case the all_customers
list) when the code tries to access the result in the For Each loop. Many programs don ’ t really need
to distinguish between when the expression is declared and when it is executed. For example, if the
code iterates through the results right after defi ning the query, there isn ’ t much difference. However,
if it may be a long time between defi ning the query and using it or if the query takes a long time to
execute, the difference may matter.

 Third, if you have any experience with relational databases, you ’ ll notice that the Select clause is
in a different position from where it would be in a SQL statement. In SQL the Select clause comes

Introduction to LINQ ❘ 475

c21.indd 475c21.indd 475 12/31/09 6:44:52 PM12/31/09 6:44:52 PM

Copyright Wrox Press. Posted with permission.

476 ❘ CHAPTER 21 LINQ

fi rst whereas in LINQ it comes at the end. This placement is due to implementation issues Microsoft
encountered while implementing IntelliSense for LINQ. The concept is similar in SQL and LINQ. In
both cases the Select clause tells which “ fi elds ” you want to select from the data. As long as you remem-
ber the difference in position (or let IntelliSense help you remember), it shouldn ’ t be too confusing.

 INTELLISENSE DEFERRED

 Basically IntelliSense doesn ’ t know what “ fi elds ” you can select until it knows what
fi elds are available. In the preceding example, the From clause indicates that the
data will be selected from all_customers , a list of Customer objects. It isn ’ t until
after the From clause that IntelliSense knows that the Select statement can pick
from the Customer class ’ s properties.

 Though it is a new language, LINQ is quite complicated. LINQ ’ s keywords are quite powerful and
fl exible, so they offer great opportunities for building powerful queries. LINQ ’ s fl exibility also
offers opportunities for creating confusing code that is diffi cult to understand and debug. Complex
LINQ queries are all the more diffi cult to debug because Visual Basic doesn ’ t let you step through
them while they execute as it does with code.

LINQ STEP - BY - STEP

Oddly, while Visual Basic programs cannot step through LINQ queries, C#
programs can. Hopefully Visual Basic will get this feature some day.

 The rest of this chapter describes LINQ in greater detail. The following sections explain the most
useful LINQ keywords that are supported by Visual Basic. The next major section describes LINQ
extension functions that you can use to query objects such as arrays and lists but that are not sup-
ported by LINQ queries.

 BASIC LINQ QUERY SYNTAX

 The following text shows the typical syntax for a LINQ query:

From ... Where ... Order By ... Select ...

 The following sections describe these four basic clauses. The sections after those describe some of
the other most useful LINQ clauses.

 From

 The From clause is the only one that is required. It tells where the data comes from and defi nes the
name by which it is known within the LINQ query. Its basic form is:

c21.indd 476c21.indd 476 12/31/09 6:44:52 PM12/31/09 6:44:52 PM

Copyright Wrox Press. Posted with permission.

From query_variable In data_source

 Here query_variable is a variable that you are declaring to manipulate the items selected from the
 data_source. This is similar to declaring a looping variable in a For or For Each statement.

 You can supply a data type for query_variable if you know its type, although due to the anonymous
types used by LINQ, it ’ s often easiest to let LINQ infer the data type automatically. For example,
the following query explicitly indicates that the query variable per is from the Person class:

Dim query = From cust As Customer In all_customers

 The From clause can include more than one query variable and data source. In that case, the query
selects data from all of the data sources. For example, the following query selects objects from the
 all_customers and all_orders lists:

Dim query = From cust In all_customers, ord In all_orders

 This query returns the cross - product of the objects in the two lists. In other words, for every object
in the all_customers list, the query returns that object paired with every object in the all_orders
list. If all_customers contains Ann, Bob, and Cindy, and all_orders contains orders numbered 1,
2, 3, then the following text shows the results returned by this query:

Ann Order 1
Ann Order 2
Ann Order 3
Bob Order 1
Bob Order 2
Bob Order 3
Cindy Order 1
Cindy Order 2
Cindy Order 3

 Usually, you will want to use a Where clause to join the objects selected from the two lists. For
example, if customers and orders are related by a common CustomerId property, you might use the
following query to select customers together with their orders rather than all orders:

Dim query = From cust In all_customers, ord In all_orders
 Where cut.CustomerId = ord.CustomerId

 If Ann, Bob, and Cindy have CustomerId values 1, 2, 3, and the three orders have the corresponding
CustomerId values, the preceding query would return the following results:

Ann Order 1
Bob Order 2
Cindy Order 3

Basic LINQ Query Syntax ❘ 477

c21.indd 477c21.indd 477 12/31/09 6:44:54 PM12/31/09 6:44:54 PM

Copyright Wrox Press. Posted with permission.

478 ❘ CHAPTER 21 LINQ

 Where

 The Where clause applies fi lters to the records selected by the From clause. It can include tests
involving the objects selected and properties of those objects. The last example in the preceding
section shows a particularly useful kind of query that joins objects from two data sources that are
related by common property values. Although the Where clause is often used for simple joins, it can
also execute functions on the selected objects and their properties.

 For example, suppose the GoodCustomer class inherits from Customer, a class that has
AccountBalance and PaymentLate properties. Also suppose the all_customers list contains
Customer and GoodCustomer objects.

 The OwesALot function defi ned in the following code returns True if a Customer owes more
than $50. The query that follows selects objects from all_customers where the objects is not a
GoodCustomer and has a PaymentLate property of True and for which function OwesALot
returns True.

Private Function OwesALot(ByVal cust As Customer) As Boolean
 Return cust.AccountBalance < -50
End Function

Dim query = From cust In all_customers
 Where Not (TypeOf cust Is GoodCustomer)
 AndAlso cust.PaymentLate _
 AndAlso OwesALot(cust)

code snippet SimpleSamples

 The Where clause can include just about any Boolean expression, usually involving the selected
objects and their properties. As the preceding example shows, it can include Not, Is, AndAlso, and
function calls. It can also include And, Or, OrElse, Mod, and Like.

 Expressions can use any of the arithmetic, date, string, or other comparison operators. The follow-
ing query selects Order objects from all_orderitems where the OrderDate property is after April
5, 2010:

Dim query = From ord In all_orders
 Where ord.OrderDate > #4/5/2010#

 Order By

 The Order By clause makes a query sort the objects selected according to one or more values.
Usually the values are properties of the objects selected. For example, the following query selects
Customer objects from the all_customers list and sorts them by their LastName and FirstName
properties:

Dim query = From cust In all_customers
 Order By cust.LastName, cust.FirstName

c21.indd 478c21.indd 478 12/31/09 6:44:54 PM12/31/09 6:44:54 PM

Copyright Wrox Press. Posted with permission.

 In this example, customers are sorted fi rst by last name. If two customers have the same last name,
they are sorted by fi rst name.

 An Order By clause can also sort objects based on calculated values. For example, suppose some
customers ’ names are surrounded by parentheses. Because “ (” comes alphabetically before letters,
those customers would normally end up at the beginning of the sorted list. The following query uses
a String class ’ s Replace method to remove parentheses from the values used in sorting so all names
are positioned in the list as if they did not contain parentheses:

Dim query = From cust In all_customers
 Order By cust.LastName.Replace("(", "").Replace(")", ""),
 cust.FirstName.Replace("(", "").Replace(")", "")

code snippet OrderByExamples

 Note that the values used for ordering results are not the values selected by the query. The two pre-
ceding queries do not specify what results they select so LINQ takes its default action and selects
the Customer objects in the all_customers list. See the next section, “ Select, ” for information on
determining the values that the query selects.

 To arrange items in descending order, simply add the keyword Descending after an ordering expres-
sion. Each expression can have its own Descending keyword so you can arrange them indepen-
dently. The following query orders customers by LastName descending. If several customers have
the same LastName, they are arranged by their FirstName values in ascending order.

Dim query = From cust In all_customers
 Order By cust.LastName Descending, cust.FirstName

 Select

 The Select clause lists the fi elds that the query should select into its result. This can be an entire
record taken from a data source or it can be one or more fi elds taken from the data sources. It can
include the results of functions and calculations on the fi elds. It can even include more complicated
results such as the results of nested queries.

 You can add an alias to any of the items that the query selects. This is particularly useful for calcu-
lated results.

 The following query selects objects from all_customers . It gives the fi rst selected fi eld the alias
Name. That fi eld ’ s value is the customer ’ s fi rst and last name separated by a space. The query also
selects the customer ’ s AccountBalance property, giving it the alias Balance.

Dim query = From cust In all_customers
 Select Name = cust.FirstName & " " & cust.LastName,
 Balance = Cust.AccountBalance

code snippet SimpleSamples

Basic LINQ Query Syntax ❘ 479

c21.indd 479c21.indd 479 12/31/09 6:44:54 PM12/31/09 6:44:54 PM

Copyright Wrox Press. Posted with permission.

480 ❘ CHAPTER 21 LINQ

 The result of the query is an IEnumerable that contains objects of an anonymous type that holds
two fi elds: Name and Balance.

 The following code shows how you might display the results. Notice that the code does not declare a
data type for the looping variable cust . The objects in the query result have an anonymous type, so
the code lets Visual Basic infer its data type.

For obj In query
 Debug.WriteLine(obj.Name & " " & FormatCurrency(obj.Balance))
Next obj

 You can also use the New keyword to create objects of an anonymous type. The following query
builds a result similar to the earlier query but uses New:

Dim query = From cust In all_customers
 Select New With {
 .Name = cust.FirstName & " " & cust.LastName,
 .Balance = Cust.AccountBalance}

 This version emphasizes that you are creating new objects, but it is more verbose and doesn ’ t seem
to have any other real benefi ts.

 The earlier queries return objects of an anonymous type. If you like, you can defi ne a type to hold
the results and then create new objects of that type in the Select clause. For example, suppose the
CustInfo class has Name and Balance properties. The following query selects the same data as
the preceding query but this time saves the results in a new CustInfo object:

Dim query = From cust In all_customers
 Select New CustInfo With {
 .Name = cust.FirstName & " " & cust.LastName,
 .Balance = Cust.AccountBalance}

code snippet SimpleSamples

 The result of this query contains CustInfo objects, not objects of an anonymous type. The following
code shows how a program can use an explicitly typed looping variable to display these results:

For ci As CustInfo In query
 Debug.WriteLine(ci.Name & " " & FormatCurrency(ci.Balance))
Next ci

code snippet SimpleSamples

c21.indd 480c21.indd 480 12/31/09 6:44:55 PM12/31/09 6:44:55 PM

Copyright Wrox Press. Posted with permission.

 If the CustInfo class provides a constructor that takes a name and account balance as parameters,
you can achieve a similar result by using the constructor instead of the With keyword. The follow-
ing query provides a result similar to the preceding one:

Dim query = From cust In all_customers
 Select New CustInfo(
 cust.FirstName & " " & cust.LastName,
 cust.AccountBalance)

code snippet SimpleSamples

 From all of these different kinds of examples, you can see the power of LINQ. You can also see the
potential for confusion. The Select clause in particular can take a number of different forms and can
return a complicated set of results. If you stick to the simplest syntax, however, your code will be
reasonably easy to understand.

 The following example shows one of the more complicated queries that uses only basic LINQ
 syntax. It selects data from multiple sources, uses a common fi eld to join them, adds an additional
Where fi lter, uses multiple values to order the results, and returns the Customer and Order objects
that meet its criteria.

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId AndAlso
 cust.AccountBalance < 0
 Order By cust.CustId, ord.OrderDate
 Select cust, ord

 Note that the Select clause changes the scope of the variables involved in the query. After the query
reaches the Select clause, it can only refer to items in that clause, later.

 For example, the following query selects customer fi rst and last names. The Order By clause comes
after the Select clause so it can only refer to items included in the Select clause. This example orders
the results by the LastName and FirstName fi elds picked by the Select clause.

Dim query = From cust In all_customers
 Select cust.FirstName, cust.LastName
 Order By LastName, FirstName

code snippet OrderByExamples

 Because the original cust variable is not chosen by the Select clause, the Order By clause cannot
refer to it.

 Note also that if the Select clause gives a result an alias, then any later clause must refer to the alias.
For example, the following query selects the customers ’ last and fi rst names concatenated into a fi eld
known by the alias FullName so the Order By clause must use the alias FullName:

Basic LINQ Query Syntax ❘ 481

c21.indd 481c21.indd 481 12/31/09 6:44:56 PM12/31/09 6:44:56 PM

Copyright Wrox Press. Posted with permission.

482 ❘ CHAPTER 21 LINQ

Dim query = From cust In all_customers
 Select FullName = cust.LastName & ", " & cust.FirstName
 Order By FullName

 Usually, it is easiest to place Order By and other clauses before the Select clause to avoid confusion.

 Using LINQ Results

 A LINQ query expression returns an IEnumerable containing the query ’ s results. A program can
iterate through this result and process the items that it contains.

 To determine what objects are contained in the IEnumerable result, you need to look carefully at the
Select clause, bolded in the following code. If this clause chooses a simple value such as a string or
integer, then the result contains those simple values.

 For example, the following query selects customer fi rst and last names concatenated into a single
string. The result is a string, so the query ’ s IEnumerable result contains strings and the For Each
loop treats them as strings.

Dim query = From cust In all_customers
 Select cust.FirstName & " " & cust.LastName

For Each cust_name As String In query
 Debug.WriteLine(cust_name)
Next cust_name

 Often the Select clause chooses some sort of object. The following query selects the Customer
objects contained in the all_customers list. The result contains Customer objects, so the code can
explicitly type its looping variable and treat it as a Customer.

Dim query = From cust In all_customers
 Select cust

For Each cust As Customer In query
 Debug.WriteLine(cust.LastName & " owes " & cust.AccountBalance)
Next cust

 The preceding example selects objects with a known class: Customer. Many queries select objects of
an anonymous type. Any time a Select clause chooses more than one item, Visual Basic defi nes an
anonymous type to hold the results. In that case, the code should let Visual Basic infer the type of
the objects in the result (and the looping variable in a For Each statement). The code can then
access the fi elds picked by the Select clause and defi ned in the anonymous type.

c21.indd 482c21.indd 482 12/31/09 6:44:57 PM12/31/09 6:44:57 PM

Copyright Wrox Press. Posted with permission.

 The following query selects only the Customer objects ’ FirstName and LastName properties. The
result is an object with an anonymous type and having those two properties. The code lets Visual
Basic infer the type for the looping variable obj . It can then access the FirstName and LastName
properties defi ned for the anonymous type, but no other Customer properties area available because
the Select clause didn ’ t choose them.

Dim query = From cust In all_customers
 Select cust.FirstName, cust.LastName

For Each obj In query
 Debug.WriteLine(obj.LastName & ", " & obj.FirstName)
Next obj

 ADVANCED LINQ QUERY SYNTAX

 The earlier sections describe the basic LINQ commands that you might expect to use regularly.
Simple queries such as the following are reasonably intuitive and easy to use:

Dim query = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId AndAlso
 cust.AccountBalance < 0
 Order By cust.CustId, ord.OrderDate
 Select cust, ord

 However, there ’ s much more to LINQ than these simple queries. The following sections describe
some of the more advanced LINQ commands that are less intuitive and that you probably won ’ t
need to use as often.

 Join

 The Join keyword selects data from multiple data sources matching up corresponding fi elds. The
following pseudo - code shows the Join command ’ s syntax:

From variable1 In data source1
Join variable2 In data source2
On variable1.field1 Equals variable2.field2

 For example, the following query selects objects from the all_customers list. For each object
it fi nds, it also selects objects from the all_orders list where the two records have the same
CustId value.

Advanced LINQ Query Syntax ❘ 483

c21.indd 483c21.indd 483 12/31/09 6:44:57 PM12/31/09 6:44:57 PM

Copyright Wrox Press. Posted with permission.

484 ❘ CHAPTER 21 LINQ

Dim query = From cust As Customer In all_customers
 Join ord In all_orders
 On cust.CustId Equals ord.CustId

code snippet JoinExamples

 A LINQ Join is similar to a SQL join except the On clause only allows you to select objects where
fi elds are equal and the Equals keyword is required.

 The following query selects a similar set of objects without using the Join keyword. Here the Where
clause makes the link between the all_customer and all_orders lists:

Dim query = From cust As Customer In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId

code snippet JoinExamples

 This is slightly more fl exible because the Where clause can make tests that are more complicated
than the Join statement ’ s Equals clause.

 The Group Join statement selects data much as a Join statement does, but it returns the results dif-
ferently. The Join statement returns an IEnumerable object that holds whatever is selected by the
query (the cust and ord objects in this example).

 The Group By statement returns the same objects but in a different arrangement. Each item in
the IEnumerable result contains an object of the fi rst type (cust in this example) plus another
IEnumerable that holds the corresponding objects of the second type (ord in this example).

Actually, the main result is a GroupJoinIterator, but that inherits from
IEnumerable, so you can treat it as such.

 For example, the following query selects customers and their corresponding orders much as the
earlier examples do. The new clause Into CustomerOrders means the IEnumerable contain-
ing the orders for each customer should be called CustomerOrders. The = Group part means
CustomerOrders should contain the results of the grouping.

Dim query =
 From cust In all_customers
 Group Join ord In all_orders
 On cust.CustId Equals ord.CustId
 Into CustomerOrders = Group

code snippet JoinExamples

 The following code shows how a program might display these results:

c21.indd 484c21.indd 484 12/31/09 6:44:58 PM12/31/09 6:44:58 PM

Copyright Wrox Press. Posted with permission.

For Each c In query
 ' Display the customer.
 Debug.WriteLine(c.cust.ToString())

 ' Display the customer's orders.
 For Each o In c.CustomerOrders
 Debug.WriteLine(Space$(4) & "OrderId: " & o.OrderId &
 ", Date: " & o.OrderDate & vbCrLf
 Next o
Next c

code snippet JoinExamples

 Each item in the main IEnumerable contains a cust object and an IEnumerable named
CustomerOrders. Each CustomerOrders object contains ord objects corresponding to the
cust object.

 This code loops through the query ’ s results. Each time through the loop, it displays the cust
object ’ s information and then loops through its CustomerOrders, displaying each ord object ’ s
information indented.

 Example program JoinExamples, which is available for download on the book ’ s web site, demon-
strates these types of Join queries.

 Group By

 Like the Group Join clause, the Group By clause lets a program select data from a fl at, relational
style format and build a hierarchical arrangement of objects. It also returns an IEnumerable that
holds objects, each containing another IEnumerable.

 The following code shows the basic Group By syntax:

From variable1 In datasource1
Group items By value Into groupname = Group

 Here items is a list of items whose properties you want selected into the group. In other words, the
properties of the items variables are added to the objects in the nested IEnumerable.

 If you omit the items parameter, the query places the objects selected by the rest of the query into
the nested IEnumerable.

 The value property tells LINQ on what fi eld to group objects. This value is also stored in the top -
 level IEnumerable values.

 The groupname parameter gives a name for the group. The objects contained in the top - level
IEnumerable get a property with this name that is an IEnumerable containing the grouped values.

 Finally, the = Group clause indicates that the group should contain the fi elds selected by the query.

 If this defi nition seems a bit confusing, an example should help. The following query selects objects
from the all_orders list. The Group By statement makes the query group orders with the same
CustId value.

Advanced LINQ Query Syntax ❘ 485

c21.indd 485c21.indd 485 12/31/09 6:45:01 PM12/31/09 6:45:01 PM

Copyright Wrox Press. Posted with permission.

486 ❘ CHAPTER 21 LINQ

Dim query1 = From ord In all_orders
 Order By ord.CustId, ord.OrderId
 Group ord By ord.CustId Into CustOrders = Group

code snippet SimpleGroupBy

 The result is an IEnumerable that contains objects with two fi elds. The fi rst fi eld is the CustId value
used to defi ne the groups. The second fi eld is an IEnumerable named CustOrders that contains the
group of order objects for each CustId value.

 The following code shows how a program might display the results in a TreeView control:

Dim root1 As TreeNode = trvResults.Nodes.Add("Orders grouped by CustId")
For Each obj In query1
 ' Display the customer id.
 Dim cust_node As TreeNode = root1.Nodes.Add("Cust Id: " & obj.CustId)

 ' List this customer's orders.
 For Each ord In obj.CustOrders cust_node.Nodes.Add("OrderId: " & ord.OrderId &
 ", Date: " & ord.OrderDate)
 Next ord
Next obj

code snippet SimpleGroupBy

 The code loops through the top - level IEnumerable. Each time through the loop, it displays the
group ’ s CustId and the loops through the group ’ s CustOrders IEnumerable displaying each order ’ s
ID and date.

 The following example is a bit more complicated. It selects objects from the all_customers and
 all_orders lists, and uses a Where clause to join the two. The Group By clause indicates that the
results should be grouped by the customer object cust . That means results that have the same cust
object are grouped together. It also means the cust object is included in the resulting top - level
IEnumerable ’ s objects much as CustId was included in the preceding example.

Dim query2 = From cust In all_customers, ord In all_orders
 Where cust.CustId = ord.CustId
 Order By cust.CustId, ord.OrderId
 Group ord By cust Into CustomerOrders = Group

code snippet SimpleGroupBy

 The following code displays the results:

Dim root2 As TreeNode = trvResults.Nodes.Add("Orders grouped by CustId")
For Each obj In query2
 ' Display the customer info.
 Dim cust_node As TreeNode = root2.Nodes.Add("Customer: " & obj.cust.ToString())

 ' List this customer's orders.

c21.indd 486c21.indd 486 12/31/09 6:45:02 PM12/31/09 6:45:02 PM

Copyright Wrox Press. Posted with permission.

 For Each ord In obj.CustomerOrders cust_node.Nodes.Add("OrderId: " & ord.OrderId &
 ", Date: " & ord.OrderDate)
 Next ord
Next obj

code snippet SimpleGroupBy

 The code loops through the top - level IEnumerable displaying each customer ’ s information. Notice
that the cust object is available at this level because it was used to group the results.

 For each customer, the code loops through the CustomerOrders group and displays each order ’ s
information.

 Example program SimpleGroupBy, which is available for download on the book ’ s web site, demon-
strates the previous two types of Group By statements.

 Another common type of query uses the Group By clause to apply some aggregate function to the
items selected in a group. The following query selects order and order item objects, grouping each
order ’ s items and displaying each order ’ s total price:

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TotalPrice = Sum(ord_item.Quantity * ord_item.UnitPrice),
 OrderItems = Group

code snippet GroupByWithTotals

 The query selects objects from the all_orders and all_order_items lists using a Where clause to
join them.

 The Group ord_item piece places the fi elds of the ord_item object in the group. The By ord piece
makes each group hold items for a particular ord object.

 The Into clause selects two values. The fi rst is a sum over all of the group ’ s ord_item objects adding
up the ord_item s ’ Quantity times UnitPrice fi elds. The second value selected is the group named
OrderItems.

 The following code shows how a program might display the results in a TreeView control named
 trvResults :

Dim root1 As TreeNode = trvResults.Nodes.Add("Orders")
For Each obj In query1
 ' Display the order id.
 Dim cust_node As TreeNode =
 root1.Nodes.Add("Order Id: " & obj.ord.OrderId &
 ", Total Price: " & FormatCurrency(obj.TotalPrice))
 ' List this order's items.
 For Each ord_item In obj.OrderItems

Advanced LINQ Query Syntax ❘ 487

c21.indd 487c21.indd 487 12/31/09 6:45:03 PM12/31/09 6:45:03 PM

Copyright Wrox Press. Posted with permission.

488 ❘ CHAPTER 21 LINQ

 cust_node.Nodes.Add(ord_item.Description & ": " &
 ord_item.Quantity & " @ " & FormatCurrency(ord_item.UnitPrice))
 Next ord_item
Next obj

code snippet GroupByWithTotals

 Each loop through the query results represents an order. For each order, the program creates a tree
node showing the order ’ s ID and the TotalPrice value that the query calculated for it.

 Next, the code loops through the order ’ s items stored in the OrderItems group. For each item, it cre-
ates a tree node showing the item ’ s Description, Quantity, and TotalPrice fi elds.

 Example program GroupByWithTotals, which is available for download on the book ’ s web site,
demonstrates this Group By statement.

 Aggregate Functions

 The preceding section explains how a Group By query can use the Sum aggregate function. LINQ
also supports the reasonably self - explanatory aggregate functions Average, Count, LongCount,
Max, and Min.

 The following query selects order objects and their corresponding order items. It uses a Group By
clause to calculate aggregates for each of the orders ’ items.

Dim query1 = From ord In all_orders, ord_item In all_order_items
 Order By ord.CustId, ord.OrderId
 Where ord.OrderId = ord_item.OrderId
 Group ord_item By ord Into
 TheAverage = Average(ord_item.UnitPrice * ord_item.Quantity),
 TheCount = Count(ord_item.UnitPrice * ord_item.Quantity),
 TheLongCount = LongCount(ord_item.UnitPrice * ord_item.Quantity),
 TheMax = Max(ord_item.UnitPrice * ord_item.Quantity),
 TheMin = Min(ord_item.UnitPrice * ord_item.Quantity),
 TheSum = Sum(ord_item.Quantity * ord_item.UnitPrice)

code snippet AggregateExamples

 The following code loops through the query ’ s results and adds each order ’ s aggregate values to a
string named txt . It displays the fi nal results in a text box named txtResults .

For Each obj In query1
 ' Display the order info.
 txt & = "Order " & obj.ord.OrderId &
 ", Average: " & obj.TheAverage &
 ", Count: " & obj.TheCount &
 ", LongCount: " & obj.TheLongCount &
 ", Max: " & obj.TheMax &
 ", Min: " & obj.TheMin &

c21.indd 488c21.indd 488 12/31/09 6:45:04 PM12/31/09 6:45:04 PM

Copyright Wrox Press. Posted with permission.

 ", Sum: " & obj.TheSum &
 vbCrLf
Next obj
txtResults.Text = txt

code snippet AggregateExamples

 Set Operations

 If you add the Distinct keyword to a query, LINQ keeps only one instance of each value selected.
For example, the following query returns a list of IDs for customers who placed an order before
4/15/2010:

Dim query = From ord In all_orders
 Where ord.OrderDate < #4/15/2010#
 Select ord.CustId
 Distinct

code snippet SetExamples

 The code examines objects in the all_orders list with OrderDate fi elds before 4/15/2010. It selects
those objects ’ CustId fi elds and uses the Distinct keyword to remove duplicates. If a particular cus-
tomer placed several orders before 4/15/2010, this query lists that customer ’ s ID only once.

 LINQ also provides Union, Intersection, and Except extension methods, but they are not supported
by Visual Basic ’ s LINQ syntax. See the section “ LINQ Functions ” later in this chapter for more
information.

 Example program SetExamples, which is available for download on the book ’ s web site, demon-
strates these set operations.

 Limiting Results

 LINQ includes several keywords for limiting the results returned by a query.

 Take makes the query keep a specifi ed number of results and discard the rest.

 Take While makes the query keep selected results as long as some condition holds and then
discard the rest.

 Skip makes the query discard a specifi ed number of results and keep the rest.

 Skip While makes the query discard selected results as long as some condition holds and
then keep the rest.

➤

➤

➤

➤

Advanced LINQ Query Syntax ❘ 489

c21.indd 489c21.indd 489 12/31/09 6:45:06 PM12/31/09 6:45:06 PM

Copyright Wrox Press. Posted with permission.

490 ❘ CHAPTER 21 LINQ

 The following code demonstrates each of these commands:

Dim q1 = From cust In all_customers Take 5
Dim q2 = From cust In all_customers Take While cust.FirstName.Contains("n")
Dim q3 = From cust In all_customers Skip 3
Dim q4 = From cust In all_customers Skip While cust.FirstName.Contains("n")

code snippet LimitingExamples

 The fi rst query selects the fi rst fi ve customers and ignores the rest.

 The second query selects customers as long as the FirstName fi eld contains the letter “ n. ” It then
discards any remaining results, even if a later customer ’ s FirstName contains an “ n. ”

 The third query discards the fi rst three customers and then selects the rest.

 The fi nal query skips customers as long as their FirstName values contain the letter “ n ” and then
keeps the rest.

 Example program LimitingExamples, which is available for download on the book ’ s web site, dem-
onstrates these commands.

 LINQ FUNCTIONS

 LINQ provides several functions (implemented as extension methods) that are not supported by
Visual Basic ’ s LINQ syntax. Though you cannot use these in LINQ queries, you can apply them to
the results of queries to perform useful operations.

 For example, the following code defi nes a query that looks for customers named Rod Stephens. It
then applies the FirstOrDefault extension method to the query to return either the fi rst object
selected by the query or Nothing if the query selects no objects.

Dim rod_query = From cust In all_customers
 Where cust.LastName = "Stephens" AndAlso cust.FirstName = "Rod"
Dim rod As Person = rod_query.FirstOrDefault()

code snippet FunctionExamples

 The following list describes some of the more useful of these extension methods:

 Aggregate — Uses a function specifi ed by the code to calculate a custom aggregate.

 DefaultIfEmpty — If the query ’ s result is not empty, returns the result. If the result is
empty, returns an IEnumerable containing a default value. Optionally can also specify the
default value (for example, a new object rather than Nothing) to use if the query ’ s result is
empty.

 Concat — Concatenates two sequences into a new sequence.

 Contains — Determines whether the result contains a specifi c value.

➤

➤

➤

➤

c21.indd 490c21.indd 490 12/31/09 6:45:06 PM12/31/09 6:45:06 PM

Copyright Wrox Press. Posted with permission.

 ElementAt — Returns an element at a specifi c position in the query ’ s result. If there is no
element at that position, it throws an exception.

 ElementAtOrDefault — Returns an element at a specifi c position in the query ’ s result. If
there is no element at that position, it returns a default value for the data type.

 Empty — This Shared IEnumerable method creates an empty IEnumerable.

 Except — Returns the items in one IEnumerable that are not in a second IEnumerable.

 First — Returns the fi rst item in the query ’ s result. If the query contains no results, it
throws an exception.

 FirstOrDefault — Returns the fi rst item in the query ’ s result. If the query contains no
results, it returns a default value for the data type. For example, the default value for an
Integer is 0 and the default value for object references is Nothing.

 Intersection — Returns the intersection of two IEnumerable objects. In other words,
it returns an IEnumerable containing items that are in both of the original IEnumerable
objects.

 Last — Returns the last item in the query ’ s result. If the query contains no results, it throws
an exception.

 LastOrDefault — Returns the last item in the query ’ s result. If the query contains no
results, it returns a default value for the data type.

 Range — This Shared IEnumerable method creates an IEnumerable containing a range of
integer values.

 Repeat — This Shared IEnumerable method creates an IEnumerable containing a value of a
given type repeated a specifi c number of times.

 SequenceEqual — Returns True if two sequences are identical.

 Single — Returns the single item selected by the query. If the query does not contain
exactly one result, it throws an exception.

 SingleOrDefault — Returns the single item selected by the query. If the query contains no
results, it returns a default value for the data type. If the query contains more than one item,
it throws an exception.

 Union — Returns the union of two IEnumerable objects. In other words, it returns an
IEnumerable containing items that are in either of the original IEnumerable objects.

 Example program FunctionExamples, which is available for download on the book ’ s web site,
demonstrates most of these functions. Example program SetExamples demonstrates Except,
Intersection, and Union.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

LINQ Functions ❘ 491

c21.indd 491c21.indd 491 12/31/09 6:45:08 PM12/31/09 6:45:08 PM

Copyright Wrox Press. Posted with permission.

492 ❘ CHAPTER 21 LINQ

 LINQ also provides conversion functions that convert results into new data types. The following list
describes these methods:

 AsEnumerable — Converts the result into a typed IEnumerable(Of T).

 AsQueryable — Converts an IEnumerable into an IQueryable.

 OfType — Removes items that cannot be cast into a specifi c type.

 ToArray — Places the results in an array.

 ToDictionary — Places the results in a Dictionary using a selector function to set each
item ’ s key.

 ToList — Converts the result into a List(Of T).

 ToLookup — Places the results in a Lookup (one - to - many dictionary) using a selector
function to set each item ’ s key.

 Note that the ToArray, ToDictionary, ToList, and ToLookup functions force the query to execute
immediately instead of waiting until the program accesses the results.

 LINQ EXTENSION METHODS

 Visual Basic doesn ’ t really execute LINQ queries. Instead it converts them into a series of function
calls (provided by extension methods) that perform the query. Though the LINQ query syntax is
generally easier to use, it is sometimes helpful to understand what those function calls look like.

 The following sections explain the general form of these function calls. They explain how the func-
tion calls are built, how you can use these functions directly in your code, and how you can extend
LINQ to add your own LINQ query methods.

 Method - Based Queries

 Suppose a program defi nes a List(Of Customer) named all_customers and then defi nes the follow-
ing query expression. This query fi nds customers that have AccountBalance values less than zero,
orders them by AccountBalance, and returns an IEnumerable object that can enumerate their names
and balances. (Example program LinqLambda, which is available for download on the book ’ s web
site, defi nes a simple Customer class and performs a similar query.)

Dim q1 =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance
 Select cust.Name, cust.AccountBalance

code snippet LinqLambda

➤

➤

➤

➤

➤

➤

➤

c21.indd 492c21.indd 492 12/31/09 6:45:09 PM12/31/09 6:45:09 PM

Copyright Wrox Press. Posted with permission.

 To perform this selection, Visual Basic converts the query into a series of function calls to form a
 method - based query that performs the same tasks as the original query. For example, the following
method - based query returns roughly the same results as the original LINQ query:

Dim q2 = all_customers.
 Where(AddressOf OwesMoney).
 OrderBy(AddressOf OrderByAmount).
 Select(AddressOf SelectFields)

code snippet LinqLambda

 This code calls the all_customers list ’ s Where method. It passes that method the address of the
function OwesMoney , which returns True if a Customer object has a negative account balance.

 The code then calls the OrderBy method of the result returned by Where. It passes the OrderBy
method the address of the function OrderByAmount , which returns a Decimal value that OrderBy
can use to order the results of Where.

 Finally, the code calls the Select method of the result returned by OrderBy. It passes Select the
address of a function that returns a CustInfo object representing each of the selected Customer
objects. The CustInfo class contains the Customer ’ s Name and AccountBalance values.

 The exact series of method calls generated by Visual Studio to evaluate the LINQ query is some-
what different from the one shown here. The version shown here uses OwesMoney , OrderByAmount ,
and SelectFields methods that I defi ned in the program to help pick, order, and select data. The
method - based query generated by Visual Basic uses automatically generated anonymous types and
lambda expressions, so it is much uglier.

 The following code shows the OwesMoney , OrderByAmount , and SelectFields methods:

Private Function OwesMoney(ByVal c As Customer) As Boolean
 Return c.AccountBalance < 0
End Function

Private Function OrderByAmount(ByVal c As Customer) As Decimal
 Return c.AccountBalance
End Function

Private Function SelectFields(ByVal c As Customer, ByVal index As Integer)
As CustInfo
 Return New CustInfo() With {
 .CustName = c.Name, .Balance = c.AccountBalance}
End Function

code snippet LinqLambda

 Function OwesMoney simply returns True if a Customer ’ s balance is less than zero. The Where
method calls OwesMoney to see if it should pick a particular Customer for output.

LINQ Extension Methods ❘ 493

c21.indd 493c21.indd 493 12/31/09 6:45:10 PM12/31/09 6:45:10 PM

Copyright Wrox Press. Posted with permission.

494 ❘ CHAPTER 21 LINQ

 Function OrderByAmount returns a Customer ’ s balance. The OrderBy method calls OrderByAmount
to order Customer objects.

 Function SelectFields returns a CustInfo object representing a Customer.

 That explains where the functions passed as parameters come from, but what are Where, OrderBy,
and Select? After all, Where is called as if it were a method provided by the all_customers object.
But all_customers is a List(Of Customer) and that has no such method.

 In fact, Where is an extension method added to the IEnumerable interface by the LINQ library. The
generic List class implements IEnumerable so it gains the Where extension method.

 Similarly, LINQ adds other extension methods to the IEnumerable interface such as Any, All,
Average, Count, Distinct, First, GroupBy, OfType, Repeat, Sum, Union, and many more.

 Method - Based Queries with Lambda Functions

 Lambda functions , or anonymous functions, make building method - based queries somewhat easier.
When you use lambda functions, you don ’ t need to defi ne separate functions to pass as parameters
to LINQ methods such as Where, OrderBy, and Select. Instead you can pass a lambda function
directly into the method.

 The following code shows a revised version of the preceding method - based query. Here the method
bodies have been included as lambda functions.

Dim q3 = all_customers.
 Where(Function(c As Customer) c.AccountBalance < 0).
 OrderBy(Of Decimal)(Function(c As Customer) c.AccountBalance).
 Select(Of CustInfo)(
 Function(c As Customer, index As Integer)
 Return New CustInfo() With {
 {.CustName = c.Name, .Balance = c.AccountBalance}
 End Function
)

code snippet LinqLambda

 Although this is more concise, not requiring you to build separate functions, it can also be a lot
harder to read and understand. Passing a simple lambda function to the Where or OrderBy method
may not be too confusing, but if you need to use a very complex function you may be better off
making it a separate routine.

 The following code shows a reasonable compromise. This code defi nes three lambda functions but
saves them in delegate variables. It then uses the variables in the calls to the LINQ functions. This
version is more concise than the original version and doesn ’ t require separate functions, but it is
easier to read than the preceding version that uses purely inline lambda functions.

c21.indd 494c21.indd 494 12/31/09 6:45:11 PM12/31/09 6:45:11 PM

Copyright Wrox Press. Posted with permission.

' Query with LINQ and inline function delegates.
Dim owes_money = Function(c As Customer) c.AccountBalance < 0
Dim cust_balance = Function(c As Customer) c.AccountBalance
Dim new_custinfo = Function(c As Customer) New CustInfo() With {
 .Name = c.Name, .Balance = c.AccountBalance}
Dim q4 = all_customers.
 Where(owes_money).
 OrderBy(Of Decimal)(cust_balance).
 Select(Of CustInfo)(new_custinfo)

code snippet LinqLambda

 Note that LINQ cannot always infer a lambda function ’ s type exactly, so sometimes you need to
give it some hints. The Of Decimal and Of CustInfo clauses in this code tell LINQ the data types
returned by the cust_balance and new_custinfo functions.

HIDDEN GENERICS

The Of Decimal and Of CustInfo clauses use generic versions of the OrderBy and
Select functions. Generics let a function take a data type as a parameter, allowing
it to work more closely with objects of that type. For more information on generics,
see Chapter 29, “ Generics, ” or msdn.microsoft.com/w256ka79.aspx .

 Instead of using these clauses, you could defi ne the functions ’ return types in their declarations. The
Func delegate types defi ned in the System namespace let you explicitly defi ne parameters and return
types for functions taking between zero and four parameters. For example, the following code
shows how you might defi ne the cust_balance function, indicating that it takes a Customer as a
parameter and returns a Decimal:

Dim cust_balance As Func(Of Customer, Decimal) =
 Function(c As Customer) c.AccountBalance

 If you use this version of cust_balance , you can leave out the Of Decimal clause in the previous
query.

 No matter which version of the method - based queries you use, the standard LINQ query
 syntax is usually easier to understand, so you may prefer to use that version whenever possible.
Unfortunately, many references describe the LINQ extension methods as if you are going to use
them in method - based queries rather than in LINQ queries. For example, the description of the
OrderBy method might include the following defi nition:

 < Extension() >
Public Shared Function OrderBy(Of TSource, TKey)
 (ByVal source As IEnumerable(Of TSource),
 ByVal key_selector As Func(Of TSource, TKey)) _
 As OrderedSequence(Of TSource)

LINQ Extension Methods ❘ 495

c21.indd 495c21.indd 495 12/31/09 6:45:12 PM12/31/09 6:45:12 PM

Copyright Wrox Press. Posted with permission.

496 ❘ CHAPTER 21 LINQ

 Here the Extension attribute indicates that this is a function that extends another class. The type of
the fi rst parameter, in this case the parameter source has type IEnumerable(Of TSource), gives the
class that this method extends. The other parameters are passed to this method. In other words, this
code allows you to call the OrderBy function for an object of type IEnumerable(Of TSource), pass-
ing it a key_selector of type Func(Of TSource, TKey). Confusing enough for you? For more infor-
mation on extension methods, see the section “ Extension Methods ” in Chapter 17, “ Subroutines
and Functions. ”

 This description of how the method ’ s parameters work is technically correct but may be a bit too
esoteric to be intuitive. It may be easier to understand if you consider a concrete example.

 If you look closely at the examples in the preceding section, you can see how this defi nition matches
up with the use of the OrderBy method and the OrderByAmount function. In those examples,
TSource corresponds to the Customer class and TKey corresponds to the Decimal type. In the defi -
nition of OrderBy shown here, the source parameter has type IEnumerable(Of Customer). The key_
selector parameter is the OrderByAmount function, which takes a Customer (TSource) parameter
and returns a Decimal (TKey). The OrderBy method itself returns an IEnumerable(Customer), cor-
responding to IEnumerable(TSource).

 It all works but what a mess. The following syntax is much more intuitive:

Order By < value1 > [Ascending/Descending],
 < value2 > [Ascending/Descending],
 ...

 Generally, you should try to use the LINQ query syntax whenever possible, so most of the rest of
this chapter assumes you will do so and describes LINQ methods in this manner rather than with
confusing method specifi cations.

 One time when you cannot easily use this type of syntax specifi cation is when you want to extend
the results of a LINQ query to add new features. The following section explains how you can write
extension methods to provide new features for LINQ results.

 Extending LINQ

 LINQ queries return some sort of IEnumerable object. (Actually they return some sort of
SelectIterator creature but the result implements IEnumerable.) The items in the result may be
simple types such as Customer objects or strings, or they may be of some bizarre anonymous type
that groups several selected fi elds together, but whatever the items are, the result is some sort of
IEnumerable.

 Because the result is an IEnumerable, you can add new methods to the result by creating extension
methods for IEnumerable.

 For example, the following code defi nes a standard deviation function. It extends the
IEnumerable(Of Decimal) interface so the method applies to the results of a LINQ query that
fetches Decimal values.

c21.indd 496c21.indd 496 12/31/09 6:45:13 PM12/31/09 6:45:13 PM

Copyright Wrox Press. Posted with permission.

' Return the standard deviation of
' the values in an IEnumerable(Of Decimal).
 < Extension() >
Public Function StdDev(ByVal source As IEnumerable(Of Decimal)) As Decimal
 ' Get the total.
 Dim total As Decimal = 0
 For Each value As Decimal In source
 total += value
 Next value

 ' Calculate the mean.
 Dim mean As Decimal = total / source.Count

 ' Calculate the sums of the deviations squared.
 Dim total_devs As Decimal = 0
 For Each value As Decimal In source
 Dim dev As Decimal = value - mean
 total_devs += dev * dev
 Next value
 ' Return the standard deviation.
 Return Math.Sqrt(total_devs / (source.Count - 1))
End Function

code snippet LinqFunctions

 NON - STANDARD STANDARDS

There are a couple of different defi nitions for standard deviation. This topic is
outside the scope of this book so it isn ’ t explored here. For more information, see
 mathworld.wolfram.com/StandardDeviation.html .

 Now, the program can apply this method to the result of a LINQ query that selects Decimal values.
The following code uses a LINQ query to select AccountBalance values from the all_customers
list where the AccountBalance is less than zero. It then calls the query ’ s StdDev extension method
and displays the result.

Dim bal_due =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust.AccountBalance
MessageBox.Show(bal_due.StdDev())

LINQ Extension Methods ❘ 497

c21.indd 497c21.indd 497 12/31/09 6:45:14 PM12/31/09 6:45:14 PM

Copyright Wrox Press. Posted with permission.

498 ❘ CHAPTER 21 LINQ

 The following code performs the same operations without storing the query in an intermediate
variable:

MessageBox.Show(
 (From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust.AccountBalance).StdDev())

 Similarly, you can make other extension methods for IEnumerable to perform other calculations on
the results of LINQ queries.

 The following version of the StdDev extension method extends IEnumerable(Of T). To process an
IEnumerable(Of T), this version also takes as a parameter a selector function that returns a Decimal
value for each of the objects in the IEnumerable(Of T).

 < Extension() >
Public Function StdDev(Of T)(ByVal source As IEnumerable(Of T),
 ByVal selector As Func(Of T, Decimal)) As Decimal
 ' Get the total.
 Dim total As Decimal = 0
 For Each value As T In source
 total += selector(value)
 Next value
 ' Calculate the mean.
 Dim mean As Decimal = total / source.Count
 ' Calculate the sums of the deviations squared.
 Dim total_devs As Decimal = 0
 For Each value As T In source
 Dim dev As Decimal = selector(value) - mean
 total_devs += dev * dev
 Next value
 ' Return the standard deviation.
 Return Math.Sqrt(total_devs / (source.Count - 1))
End Function

code snippet LinqFunctions

 For example, if a LINQ query selects Customer objects, the result implements IEnumerable(Of
Customer). In that case, the selector function should take as a parameter a Customer object and
it should return a Decimal. The following code shows a simple selector function that returns a
Customer ’ s AccountBalance:

Private Function TotalBalance(ByVal c As Customer) As Decimal
 Return c.AccountBalance
End Function

c21.indd 498c21.indd 498 12/31/09 6:45:15 PM12/31/09 6:45:15 PM

Copyright Wrox Press. Posted with permission.

 The following code shows how a program can use this version of StdDev with this selector function.
The LINQ query selects Customer objects with AccountBalance values less than zero. The code
then calls the query ’ s StdDev method, passing it the address of the selector function. The new ver-
sion of StdDev uses the selector to calculate the standard deviation of the selected Customer objects ’
AccountBalance values, and then the code displays the result.

Dim stddev_due =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Select cust
Dim result As Decimal = stddev_due.StdDev(AddressOf TotalBalance)
MessageBox.Show(result)

 For a fi nal example, consider the following Randomize method, which also extends IEnumerable(Of
T). It uses the IEnumerable ’ s ToArray method to copy the values into an array, randomizes the
array, and returns the array.

 < Extension() >
Public Function Randomize(Of T) _
 (ByVal source As IEnumerable(Of T)) As IEnumerable(Of T)
 Dim rand As New Random
 Dim values() As T = source.ToArray()
 Dim num_values As Integer = values.Length
 For i As Integer = 0 To num_values - 2
 Dim j As Integer = rand.Next(i, num_values)
 Dim temp As T = values(i)
 values(i) = values(j)
 values(j) = temp
 Next i
 Return values
End Function

code snippet LinqFunctions

 The following code shows how a program might use this method to select Customer objects
from the all_customers list and then randomize the result. You could add Where and other clauses
to the LINQ query without changing the way Randomize is used.

Dim random_custs =
 (From cust In all_customers
 Select cust).Randomize()

 For more information on extension methods, see the section “ Extension Methods ” in Chapter 17,
 “ Subroutines and Functions. ”

LINQ Extension Methods ❘ 499

c21.indd 499c21.indd 499 12/31/09 6:45:15 PM12/31/09 6:45:15 PM

Copyright Wrox Press. Posted with permission.

500 ❘ CHAPTER 21 LINQ

 LINQ TO OBJECTS

 LINQ to Objects refers to methods that let a program extract data from objects that are extended
by LINQ extension methods. These methods extend IEnumerable(Of T) so that they apply to any
class that implements IEnumerable(Of T) including Dictionary(Of T), HashSet(Of T), LinkedList(Of
T), Queue(Of T), SortedDictionary(Of T), SortedList(Of T), Stack(Of T), and others.

 For example, the following code searches the all_customers list for customers with negative
account balances. It orders them by account balance and returns their names and balances.

Dim overdue_custs =
 From cust In all_customers
 Where cust.AccountBalance < 0
 Order By cust.AccountBalance Ascending
 Select cust.Name, cust.AccountBalance

 The result of this query is an IEnumerable object that the program can iterate through to take action
for the selected customers.

 All of the examples shown previously in this chapter use LINQ to Objects, so this section says no
more about them. See the previous sections for more information and examples.

 LINQ TO XML

 LINQ to XML refers to methods that let a program move data between XML objects and other
data - containing objects. For example, using LINQ to XML you can select customer data and use it
to build an XML document.

 LINQ provides a new selection of XML elements. These classes contained in the System.Xml
.Linq namespace correspond to the classes in the System.Xml namespace. The names of the new
classes begin with “ X ” instead of “ Xml. ” For example, the LINQ class representing an element is
XElement whereas the System.Xml class is XmlElement.

 The LINQ versions of the XML classes provide many of the same features as the System.Xml
 versions, but they also provide support for new LINQ features.

 The following section describes one of the most visible features of the LINQ XML classes: XML
literals. The two sections after that introduce methods for using LINQ to move data into and out of
XML objects.

 XML Literals

 In addition to features similar to those provided by the System.Xml classes, the new System.Xml
.Linq classes provide new LINQ - oriented features. One of the most visible of those features is the
ability to use XML literal values. For example, the following code creates an XDocument object
that contains three Customer elements:

c21.indd 500c21.indd 500 12/31/09 6:45:16 PM12/31/09 6:45:16 PM

Copyright Wrox Press. Posted with permission.

Dim xml_literal As XElement = _
 < AllCustomers >
 < Customer FirstName="Ann" LastName="Archer" > 100.00 < /Customer >
 < Customer FirstName="Ben" LastName="Best" > -24.54 < /Customer >
 < Customer FirstName="Carly" LastName="Cant" > 62.40 < /Customer >
 < /AllCustomers >

code snippet CustomersToXml

 Visual Basic LINQ translates this literal into an XML object hierarchy holding a root element
named AllCustomers that contains three Customer elements. Each Customer element has two attri-
butes, FirstName and LastName.

 To build the same hierarchy using System.Xml objects would take a lot more work. The
CustomersToXml example program, which is available for download on the book ’ s web site,
includes a System.Xml version in addition to the previous LINQ literal version. The System.Xml
version takes 26 lines of code and is much harder to read than the LINQ literal version.

 Other LINQ XML classes such as XDocument, XComment, XCdata, and XProcessingInstruction
also have literal formats, although usually it ’ s easier to use an XElement instead of an XDocument,
and the others are usually contained in an XElement or XDocument.

 The Visual Basic code editor also provides some extra enhancements to make writing XML liter-
als easier. For example, if you type a new XML tag, when you type the closing “ < ” character the
editor automatically adds a corresponding closing tag. If you type “ < Customer > ” the editor adds
the “ < /Customer > ” tag. Later if you change a tag ’ s name, the code editor automatically changes the
 corresponding closing tag.

 Together these LINQ XML literal tools make building hard - coded XML data much easier than it is
using the System.Xml objects.

 LINQ Into XML

 To select data into XML objects, you can use syntax similar to the syntax you use to build an XML
literal. You then add the special characters < %= ... % > to indicate a “ hole ” within the literal. Inside
the hole, you replace the ellipsis with a LINQ query that extracts data from Visual Basic objects and
uses them to build new XML objects.

 For example, suppose the all_customers list contains Customer objects. The following code builds
an XElement object that contains Customer XML elements for all of the Customer objects:

Dim x_all As XElement = _
 < AllCustomers >
 < %= From cust In all_customers
 Select New XElement("Customer",
 New XAttribute("FirstName", cust.FirstName),
 New XAttribute("LastName", cust.LastName),
 New XText(cust.Balance.ToString("0.00")))
 % >
 < /AllCustomers >

code snippet CustomersToXml

LINQ to XML ❘ 501

c21.indd 501c21.indd 501 12/31/09 6:45:16 PM12/31/09 6:45:16 PM

Copyright Wrox Press. Posted with permission.

502 ❘ CHAPTER 21 LINQ

 The following text shows a sample of the resulting XML element:

 < AllCustomers >
< Customer FirstName="Ann" LastName="Archer" > 100.00 < /Customer >
 < Customer FirstName="Ben" LastName="Best" > -24.54 < /Customer >
< Customer FirstName="Carly" LastName="Cant" > 62.40 < /Customer >
< /AllCustomers >

 You can have more than one hole within the XML literal. Within the hole, you can add LINQ
query code as usual. For example, you can use a Where clause to fi lter the objects copied into the
XML element.

 The following code uses an XML literal that contains two holes. The fi rst uses a Where clause to
select customers with non - negative balances and the second selects customers with negative
balances. It places these two groups of customers inside different sub - elements within the
resulting XML.

' Separate customers with positive and negative balances.
Dim separated As XElement = _
 < AllCustomers >
 < PositiveBalances >
 < %= From cust In x_all.Descendants("Customer")
 Where CDec(cust.Value) < = 0
 Order By CDec(cust.Value) Descending
 Select New XElement("Customer",
 New XAttribute("FirstName",
 CStr(cust.Attribute("FirstName"))),
 New XAttribute("LastName",
 CStr(cust.Attribute("LastName"))),
 New XText(cust.Value))
 % >
 < /PositiveBalances >
 < NegativeBalances >
 < %= From cust In x_all.Descendants("Customer")
 Where CDec(cust.Value) < 0
 Order By CDec(cust.Value) Descending
 Select New XElement("Customer",
 New XAttribute("FirstName",
 CStr(cust.Attribute("FirstName"))),
 New XAttribute("LastName",
 CStr(cust.Attribute("LastName"))),
 New XText(cust.Value))
 % >
 < /NegativeBalances >
 < /AllCustomers >

code snippet LinqToXml

 The following text shows the resulting XML element:

c21.indd 502c21.indd 502 12/31/09 6:45:19 PM12/31/09 6:45:19 PM

Copyright Wrox Press. Posted with permission.

<AllCustomers>
 <PositiveBalances>
 <Customer FirstName=“Dan” LastName=“Dump”>117.95</Customer>
 <Customer FirstName=“Ann” LastName=“Archer”>100.00</Customer>
 <Customer FirstName=“Carly” LastName=“Cant”>62.40</Customer>
 </PositiveBalances>
 <NegativeBalances>
 <Customer FirstName=“Ben” LastName=“Best”>-24.54</Customer>
 <Customer FirstName=“Frank” LastName=“Fix”>-150.90</Customer>
 <Customer FirstName=“Edna” LastName=“Ever”>-192.75</Customer>
 </NegativeBalances>
</AllCustomers>

 Example program LinqToXml, which is available for download on the book ’ s web site,
 demonstrates these XML literals containing holes.

 LINQ Out Of XML

 The LINQ XML objects provide a standard assortment of LINQ functions that make moving data
from those objects into IEnumerable objects simple. Using these functions, it ’ s about as easy to
select data from the XML objects as it is from IEnumerable objects such as arrays and lists.

 Because the XML objects represent special hierarchical data structures, they also provide methods
to help you search those data structures. For example, the XElement object provides a Descendants
function that searches the object ’ s descendants for elements of a certain type.

 The following code extracts the x_all XElement object ’ s Customer descendants. It selects their
FirstName and LastName attributes, and the balance saved as each element ’ s value.

Dim select_all = From cust In x_all.Descendants("Customer")
 Order By CDec(cust.Value)
 Select FName = cust.Attribute("FirstName").Value,
 LName = cust.Attribute("LastName").Value,
 Balance = cust.Value

code snippet LinqToXml

 The program can now loop through the select_all object just as it can loop through any other
IEnumerable selected by a LINQ query.

 The following query selects only customers with a negative balance:

Dim x_neg = From cust In x_all.Descendants("Customer")
 Where CDec(cust.Value) < 0
 Select FName = cust.Attribute("FirstName").Value,
 LName = cust.Attribute("LastName").Value,
 Balance = cust.Value

code snippet LinqToXml

LINQ to XML ❘ 503

c21.indd 503c21.indd 503 12/31/09 6:45:19 PM12/31/09 6:45:19 PM

Copyright Wrox Press. Posted with permission.

504 ❘ CHAPTER 21 LINQ

 Example program LinqToXml, which is available for download on the book ’ s web site, demon-
strates these XML literals containing holes.

 The following table describes other methods supported by XElement that a program can use to
navigate through an XML hierarchy. Most of the functions return IEnumerable objects that you
can then use in LINQ queries.

 FUNCTION RETURNS

 Ancestors IEnumerable containing all ancestors of the element.

 AncestorsAndSelf IEnumerable containing this element followed by all ancestors of the

element.

 Attribute The element ’ s attribute with a specifi c name.

 Attributes IEnumerable containing the element ’ s attributes.

 Descendants IEnumerable containing all descendants of the element.

 DescendantsAndSelf IEnumerable containing this element followed by all descendants of

the element.

 DescendantNodes IEnumerable containing all descendant nodes of the element. These

include all nodes such as XElement and XText.

 DescendantNodesAndSelf IEnumerable containing this element followed by all descendant nodes

of the element. These include all nodes such as XElement and XText.

 Element The fi rst child element with a specifi c name.

 Elements IEnumerable containing the immediate children of the element.

 ElementsAfterSelf IEnumerable containing the siblings of the element that come after

this element.

 ElementsBeforeSelf IEnumerable containing the siblings of the element that come before

this element.

 Nodes IEnumerable containing the nodes that are immediate children of the

element. These include all nodes such as XElement and XText.

 NodesAfterSelf IEnumerable containing the sibling nodes of the element that come

after this element.

 NodesBeforeSelf IEnumerable containing the sibling nodes of the element that come

before this element.

 Most of these functions that return an IEnumerable take an optional parameter that you can use to
indicate the names of the elements to select. For example, if you pass the Descendants function the
parameter “ Customer, ” the function returns only the descendants of the element that are named Customer.

c21.indd 504c21.indd 504 12/31/09 6:45:20 PM12/31/09 6:45:20 PM

Copyright Wrox Press. Posted with permission.

 Example program LinqToXmlFunctions, which is available for download on the book ’ s web site,
demonstrates these XML functions.

 In addition to these functions, Visual Basic ’ s LINQ query syntax recognizes several axis selectors.
In XML, an axis is a “ direction ” in which you can move from a particular node. These include such
directions as the node ’ s descendants, the node ’ s immediate children, and the node ’ s attributes.

 The following table gives examples of shorthand expressions for node axes and their functional
equivalents.

 SHORTHAND MEANING EQUIVALENT

 x... < Customer > Descendants named Customer. x.Descendants(“ Customer “)

 x. < Child > An element named Child that is a child

of this node.

 x.Attributes(“ Child “)

 x.@ < FirstName > The value of the FirstName attribute. x.Attributes(“ FirstName “).

Value

 x.@FirstName The value of the FirstName attribute. x.Attributes(“ FirstName “).

Value

 For example, consider the following XElement literal:

Dim x_all As XElement = _
 <AllCustomers>
 <PositiveBalances>
 <Customer FirstName=“Dan” LastName=“Dump”>117.95</Customer>
 <Customer FirstName=“Ann” LastName=“Archer”>100.00</Customer>
 <Customer FirstName=“Carly” LastName=“Cant”>62.40</Customer>
 </PositiveBalances>
 <NegativeBalances>
 <Customer FirstName=“Ben” LastName=“Best”>-24.54</Customer>
 <Customer FirstName=“Frank” LastName=“Fix”>-150.90</Customer>
 <Customer FirstName=“Edna” LastName=“Ever”>-192.75</Customer>
 </NegativeBalances>
 </AllCustomers>

code snippet LinqAxes

 The following code uses axis shorthand to make several different selections:

' Select all Customer descendants of x_all.
Dim desc = x_all.Descendants("Customer") ' Functional version.
Dim desc2 = x_all. < Customer > ' LINQ query version.

' Select Customer descendants of x_all where FirstName attribute is Ben.
Dim ben = From cust In x_all.Descendants("Customer")
 Where cust.@FirstName = "Ben"

LINQ to XML ❘ 505

c21.indd 505c21.indd 505 12/31/09 6:45:21 PM12/31/09 6:45:21 PM

Copyright Wrox Press. Posted with permission.

506 ❘ CHAPTER 21 LINQ

' Select Customer descendants of x_all where FirstName attribute is Ann.
Dim ann = From cust In x_all. < Customer >
 Where cust.@ < FirstName > = "Ann"

' Starting at x_all, go to the NegativeBalances node and find
' its descendants that are Customer elements. Select those with
' value less than -50.
Dim neg_desc2 = From cust In x_all. < NegativeBalances > ... < Customer >
 Where CDec(cust.Value) < -50

code snippet LinqAxes

 Example program LinqAxes, which is available for download on the book ’ s web site, demonstrates
these LINQ query XML axes.

 Note that IEnumerable objects allow indexing so you can use an index to select a particular item
from the results of any of these functions that returns an IEnumerable. For example, the follow-
ing statement starts at element x_all , goes to descendants named NegativeBalances , gets that
element ’ s Customer children, and then selects the second of them (indexes are numbered starting
with zero):

Dim neg_cust1 = x_all. < NegativeBalances > . < Customer > (1)

 Together the LINQ XML functions and query axes operators let you explore XML hierarchies quite
effectively.

 In addition to all of these navigational features, the LINQ XML classes provide the usual assort-
ment of methods for manipulating XML hierarchies. Those functions let you fi nd an element ’ s
 parent, add and remove elements, and so forth. For more information, see the online help or the
MSDN web site.

 LINQ TO ADO.NET

 LINQ to ADO.NET, formerly known as DLinq, provides tools that let your applications apply
LINQ - style queries to objects used by ADO.NET to store and interact with relational data.

 LINQ to ADO.NET includes three components: LINQ to SQL, LINQ to Entities, and LINQ to
DataSet. The following sections briefl y give additional detail about these three pieces.

 LINQ to SQL and LINQ to Entities

 LINQ to SQL and LINQ to Entities are object - relational mapping (O/RM) tools that build strongly
typed classes for modeling databases. They generate classes to represent the database and the tables
that it contains. LINQ features provided by these classes allow a program to query the database
model objects.

c21.indd 506c21.indd 506 12/31/09 6:45:22 PM12/31/09 6:45:22 PM

Copyright Wrox Press. Posted with permission.

 For example, to build a database model for use by LINQ to SQL, select the Project menu ’ s Add New
Item command and add a new “ LINQ to SQL Classes ” item to the project. This opens a designer
where you can defi ne the database ’ s structure.

 Now you can drag SQL Server database objects from the Server Explorer to build the database
model. If you drag all of the database ’ s tables onto the designer, you should be able to see all of the
tables and their fi elds, primary keys, relationships, and other structural information.

 LINQ to SQL defi nes a DataContext class to represent the database. Suppose a program defi nes a
DataContext class named dcTestScores and creates an instance of it named db . Then the following
code selects all of the records from the Students table ordered by fi rst and last name:

Dim query = From stu In db.Students
 Order By stu.FirstName, stu.LastName

 Microsoft intends LINQ to SQL to be a quick tool for building LINQ - enabled classes for use with
SQL Server databases. The designer can quickly take a SQL Server database, build a model for it,
and then create the necessary classes.

 The Entity Framework that includes LINQ to Entities is designed for use in more complicated enter-
prise scenarios. It allows extra abstraction that decouples a data object model from the underly-
ing database. For example, the Entity Framework allows you to store pieces of a single conceptual
object in more than one database table.

 Building and managing SQL Server databases and the Entity Framework are topics too large to
cover in this book so LINQ to SQL and LINQ to Entities are not described in more detail here. For
more information, consult the online help or Microsoft ’ s web site. Some of Microsoft ’ s relevant web
sites include:

 The LINQ Project (msdn2.microsoft.com/netframework/aa904594.aspx)

 A LINQ to SQL overview (msdn.microsoft.com/bb425822.aspx)

 The ADO.NET Entity Framework Overview (msdn.microsoft.com/aa697427.aspx)

 LINQ to DataSet

 LINQ to DataSet lets a program use LINQ - style queries to select data from DataSet objects. A
DataSet contains an in - memory representation of data contained in tables. Although a DataSet rep-
resents data in a more concrete format than is used by the object models used in LINQ to SQL and
LINQ to Entities, DataSets are useful because they make few assumptions about how the data was
loaded. A DataSet can hold data and provide query capabilities whether the data was loaded from
SQL Server, some other relational database, or by the program ’ s code.

 The DataSet object itself doesn ’ t provide many LINQ features. It is mostly useful because it holds
DataTable objects that represent groupings of items, much as IEnumerable objects do.

 The DataTable class does not directly support LINQ either, but it has an AsEnumerable method that
converts the DataTable into an IEnumerable, which you already know supports LINQ.

➤

➤

➤

LINQ to ADO.NET ❘ 507

c21.indd 507c21.indd 507 12/31/09 6:45:22 PM12/31/09 6:45:22 PM

Copyright Wrox Press. Posted with permission.

508 ❘ CHAPTER 21 LINQ

 WHERE ’ S IENUMERABLE?

Actually, the AsEnumerable method converts the DataTable into an
EnumerableRowCollection object but that object implements IEnumerable.

 Example program LinqToDataSetScores, which is available for download on the book ’ s web site,
demonstrates LINQ to DataSet concepts. This program builds a DataSet that contains two tables.
The Students table has fi elds StudentId, FirstName, and LastName. The Scores table has fi elds
StudentId, TestNumber, and Score.

 The example program defi nes class - level variables dtStudents and dtScores that hold references to
the two DataTable objects inside the DataSet.

 The program uses the following code to select Students records where the LastName fi eld comes
before “ D ” alphabetically:

Dim before_d =
 From stu In dtStudents.AsEnumerable()
 Where stu!LastName < "D"
 Order By stu.Field(Of String)("LastName")
 Select First = stu!FirstName, Last = stu!LastName

dgStudentsBeforeD.DataSource = before_d.ToList

code snippet LinqToDataSetScores

 There are only a few differences between this query and previous LINQ queries. First, the From
clause calls the DataTable object ’ s AsEnumerable method to convert the table into something that
supports LINQ.

 Second, the syntax stu!LastName lets the query access the LastName fi eld in the stu object. The
stu object is a DataRow within the DataTable.

 Third, the Order By clause uses the stu object ’ s Field(Of T) method. The Field(Of T) method
provides strongly typed access to the DataRow object ’ s fi elds. In this example the LastName fi eld
contains string values. You could just as well have used stu!LastName in the Order By clause, but
Visual Basic wouldn ’ t provide strong typing.

 Finally, the last line of code in this example sets a DataGrid control ’ s DataSource property equal to
the result returned by the query so the control will display the results. The DataGrid control cannot
display the result directly so the code calls the ToList method to convert the result into a list, which
the DataGrid can use.

 The following list summarizes the key differences between a LINQ to DataSet query and a normal
LINQ to Objects query:

c21.indd 508c21.indd 508 12/31/09 6:45:23 PM12/31/09 6:45:23 PM

Copyright Wrox Press. Posted with permission.

 The LINQ to DataSet query must use the DataTable object ’ s AsEnumerable method to
make the object queryable.

 The code can access the fi elds in a DataRow as in stu!LastName or as in stu.Field(Of
String)(“ LastName “) .

 If you want to display the results in a DataGrid control, use the query ’ s ToList method.

 If you understand these key differences, the rest of the query is similar to those used by LINQ to
Objects. The following code shows two other examples:

' Select all students and their scores.
Dim joined =
 From stu In dtStudents.AsEnumerable()
 Join score In dtScores.AsEnumerable()
 On stu!StudentId Equals score!StudentId
 Order By stu!StudentId, score!TestNumber
 Select
 ID = stu!StudentId,
 Name = stu!FirstName & stu!LastName,
 Test = score!TestNumber,
 score!Score
dgJoined.DataSource = joined.ToList

' Select students with average scores > = 90.
Dim letter_grade =
 Function(num_score As Double)
 Return Choose(num_score \ 10,
 New Object() {"F", "F", "F", "F", "F", "D", "C", "B", "A", "A"})
 End Function

' Add Where Ave > = 90 after the Group By statement
' to select students getting an A.
Dim grade_a =
 From stu In dtStudents.AsEnumerable()
 Join score In dtScores.AsEnumerable()
 On stu!StudentId Equals score!StudentId
 Group score By stu Into
 Ave = Average(CInt(score!Score)), Group
 Order By Ave
 Select Ave,
 Name = stu!FirstName & stu!LastName,
 ID = stu!StudentId,
 Grade = letter_grade(Ave)
dgAverages.DataSource = grade_a.ToList

code snippet LinqToDataSetScores

 The fi rst query selects records from the Students table and joins them with the corresponding
records in the Scores table. It displays the results in the dgJoined DataGrid control.

 Next, the code defi nes an inline function and saves a reference to it in the variable letter_grade .
This function returns a letter grade for numeric scores between 0 and 100.

➤

➤

➤

LINQ to ADO.NET ❘ 509

c21.indd 509c21.indd 509 12/31/09 6:45:24 PM12/31/09 6:45:24 PM

Copyright Wrox Press. Posted with permission.

510 ❘ CHAPTER 21 LINQ

 The next LINQ query selects corresponding Students and Scores records, and groups them by the
Students records, calculating each Student ’ s average score at the same time. The query orders
the results by average and selects the students ’ names, IDs, and averages. Finally, the code
displays the result in the dgAverages DataGrid.

 LINQ to DataSet not only allows you to pull data out of a DataSet, it also provides a way to put
data into a DataSet. If the query selects DataRow objects, then its CopyToDataTable method con-
verts the query results into a new DataTable object that you can then add to a DataSet.

 The following code selects records from the Students table for students with last name less than
 “ D. ” It then uses CopyToDataTable to convert the result into a DataTable and displays the results in
the dgNewTable DataGrid control. It sets the new table ’ s name and adds it to the dsScores DataSet
object ’ s collection of tables.

' Make a new table.
Dim before_d_rows =
 From stu In dtStudents.AsEnumerable()
 Where stu!LastName < "D"
 Select stu
Dim new_table As DataTable = before_d_rows.CopyToDataTable()
dgNewTable.DataSource = new_table

new_table.TableName = "NewTable"
dsScores.Tables.Add(new_table)

code snippet LinqToDataSetScores

 The LinqToDataSetScores example program displays a tab control. The fi rst tab holds a DataGrid
control that uses the dsScores DataSet as its data source, so you can see all of the DataSet ’ s tables
including the new table.

 PLINQ

 PLINQ (Parallel LINQ, pronounced “ plink ”) allows a program to execute LINQ queries across
multiple processors or cores in a multi - core system. If you have a multi - core CPU and a nicely paral-
lelizable query, PLINQ may improve your performance considerably.

 So what kinds of queries are “ nicely parallelizable? ” The short, glib answer is, it doesn ’ t really mat-
ter. Microsoft has gone to great lengths to minimize the overhead of PLINQ so using PLINQ may
help and shouldn ’ t hurt you too much.

 Simple queries that select items from a data source often work well. If the items in the source can be
examined, selected, and otherwise processed independently, then the query is parallelizable.

 Queries that must use multiple items at the same time do parallelize nicely. For example, adding an
OrderBy function to the query forces the program to gather all of the results before sorting them so
that part of the query at least will not benefi t from PLINQ.

c21.indd 510c21.indd 510 12/31/09 6:45:25 PM12/31/09 6:45:25 PM

Copyright Wrox Press. Posted with permission.

 THE NEED FOR SPEED

Some feel that adding parallelism to LINQ is kind of like giving caffeine to a snail.
A snail is slow. Giving it caffeine might speed it up a bit, but you ’ d get a much
bigger performance gain if you got rid of the snail and got a cheetah instead.

Similarly, LINQ isn ’ t all that fast. Adding parallelism will speed it up but you will
probably get a larger speed improvement by moving the data into a database or
using special - purpose algorithms designed to manage your particular data.

 This argument is true, but you don ’ t use LINQ because it ’ s fast; you use it because
it ’ s convenient, easy to use, and fl exible. Adding parallelism makes it a bit faster
and, as you ’ ll see shortly, makes it so easy that it doesn ’ t cost you much effort.

 If you really need signifi cant performance improvements, you should consider
moving the data into a database or more sophisticated data structure, but if you ’ re
using LINQ anyway, you may as well take advantage of PLINQ when you can.

 Adding parallelism to LINQ is remarkably simple. First, add a reference to the System.Threading
library to your program. Then add a call to AsParallel to the enumerable object that you ’ re search-
ing. For example, the following code uses AsParallel to select the even numbers from the array
 numbers :

Dim evens =
 From num In numbers.AsParallel()
 Where num Mod 2 = 0

PUZZLING PARALLELISM

 Note that for small enumerable objects (lists containing only a few items) and
on computers that have only a single CPU, the overhead of using AsParallel may
actually slow down execution.

 SUMMARY

 LINQ provides the ability to perform SQL - like queries within Visual Basic. Depending on which
form of LINQ you are using, the development environment may provide strong type checking and
IntelliSense support.

 LINQ to Objects allows a program to query arrays, lists, and other objects that implement the
IEnumerable interface. LINQ to XML and the new LINQ XML classes allow a program to extract
data from XML objects and to use LINQ to generate XML hierarchies. LINQ to ADO.NET (which
includes LINQ to SQL, LINQ to Entities, and LINQ to DataSet) allow a program to perform

Summary ❘ 511

c21.indd 511c21.indd 511 12/31/09 6:45:25 PM12/31/09 6:45:25 PM

Copyright Wrox Press. Posted with permission.

512 ❘ CHAPTER 21 LINQ

 queries on objects representing data in a relational database. Together these LINQ tools allow a
program to select data in powerful new ways.

 Visual Basic includes many features that support LINQ. Extension methods, inline or lambda func-
tions, anonymous types, type inference, and object initializers all help make LINQ possible. If
misused, some of these features can make code harder to read and understand, but used judiciously,
they give you new options for program development.

 For much more information on the various LINQ technologies, see the online help and the Web.
The following list includes several useful Microsoft web pages that you can follow to learn more
about LINQ. Some are a bit old but they still provide invaluable information.

 Hooked On LINQ (a wiki with some useful information, particularly its “ 5 Minute
Overviews”) — www.hookedonlinq.com/LINQtoSQL5MinuteOverview.ashx .

 The LINQ Project — msdn.microsoft.com/vbasic/aa904594.aspx .

 101 LINQ Samples (in C#) — msdn.microsoft.com/vcsharp/aa336746.aspx .

 LINQ jump page — msdn.microsoft.com/bb397926.aspx .

 Visual Studio 2008 Samples (including hands - on LINQ labs) — msdn.microsoft.com/
vbasic/bb330936.aspx .

 Visual Studio 2010 Samples (not many now but there should be more later) —
http://msdn.microsoft.com/en-us/vstudio/dd238515.aspx

 The .NET Standard Query Operators — msdn.microsoft.com/bb394939.aspx .

 LINQ to DataSet (by Erick Thompson, ADO.NET Program Manager, in the ADO.NET
team blog) — blogs.msdn.com/adonet/archive/2007/01/26/querying-datasets-
introduction-to-linq-to-dataset.aspx .

 LINQ to SQL overview — msdn.microsoft.com/bb425822.aspx .

 The ADO.NET Entity Framework Overview — msdn.microsoft.com/aa697427.aspx .

 PLINQ — msdn.microsoft.com/dd460688(VS.100).aspx .

 A LINQ query returns an IEnumerable object containing a list of results. If you call the result ’ s
ToList method, you can convert the result into a form that can be displayed by a DataGrid control.
That is a technique used by several of the examples described in the section “ LINQ to DataSet ” ear-
lier in this chapter.

 Other chapters describe other controls provided by Visual Basic. Chapter 20, “ Database Controls
and Objects, ” describes many objects and controls that you can use to display and manipulate
data from a relational database. Earlier chapters describe the many controls that you can put on
Windows and WPF forms.

 Even all of these different kinds of controls cannot satisfy every application ’ s needs. Chapter 22,
 “ Custom Controls, ” explains how you can build controls of your own to satisfy unfulfi lled needs.
These controls can implement completely new features or combine existing controls to provide a
tidy package that is easy to reuse.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c21.indd 512c21.indd 512 12/31/09 6:45:27 PM12/31/09 6:45:27 PM

Copyright Wrox Press. Posted with permission.

