To use these macros, define Code, Code First, Code Last, and Code Single styles. Typically these will all use a fixed-width font. You might add extra paragraph spacing before Code First, after Code Last, and both before and after Code Single. This separates the code from other text. You might also indent, use a slightly smaller font, and make the code bold. See the downloadable Word document for examples.

Subroutine ToCode calls subroutines SetCodeStyles, StraightenQuotes, and ColorComments to do the work.

' Format the selected text so it looks sort of like code.

' Note: First define the Code style.

Public Sub ToCode()

Dim selection_range As Range

 ' Get the selected range.

 Set selection_range = Selection.Range

 ' Set the code styles, straighten quotes, and color comments.

 SetCodeStyles selection_range

 StraightenQuotes selection_range

 ColorComments selection_range

End Sub

Subroutine SetCodeStyles sets the selected text's style. If the selection includes a single paragraph, it sets the paragraph's style to Code Single.

If the selection contains more than one paragraph, the code sets it's style to Code. It then sets the first and last paragraphs to Code First and Code Last.

' Set the range's last paragraph's style to Code Last.

' Set the other paragraphs' styles to Code.

Public Sub SetCodeStyles(ByVal rng As Range)

 Set selection_range = Selection.Range

 If selection_range.Paragraphs.Count = 1 Then

 selection_range.Style = ActiveDocument.Styles("Code Single")

 Else

 selection_range.Style = ActiveDocument.Styles("Code")

 selection_range.Paragraphs(1).Style = _

 ActiveDocument.Styles("Code First")

selection_range.Paragraphs(selection_range.Paragraphs.Count).Style = _

 ActiveDocument.Styles("Code Last")

 End If

End Sub

Subroutine StraightenQuotes replaces curly quotes with straight quotes. Notice how it turns AutoFormatAsYouTypeReplaceQuotes off before starting to prevent Word from automatically replacing the straight quotes with curly quotes. Also notics how it restores the original value for this setting when it is done.

' Replace curly quotes with straight quotes.

Public Sub StraightenQuotes(ByVal rng As Range)

Dim old_replace_quotes As Boolean

 old_replace_quotes = Options.AutoFormatAsYouTypeReplaceQuotes

 Options.AutoFormatAsYouTypeReplaceQuotes = False

 rng.Find.ClearFormatting

 rng.Find.Replacement.ClearFormatting

 With rng.Find

 .Forward = True

 .Wrap = wdFindStop

 .Format = False

 .MatchCase = False

 .MatchWholeWord = False

 .MatchWildcards = False

 .MatchSoundsLike = False

 .MatchAllWordForms = False

 .Text = "'"

 .Replacement.Text = "'"

 .Execute Replace:=wdReplaceAll

 .Text = """"

 .Replacement.Text = """"

 .Execute Replace:=wdReplaceAll

 End With

 Options.AutoFormatAsYouTypeReplaceQuotes = old_replace_quotes

End Sub

Finally subroutine ColorComments makes comments green. It searches each paragraph character-by-character, keeping track of whether a quoted string is open. If it finds a single quote while a string is not open, it colors the rest of the paragraph green.

' Color comments green.

Public Sub ColorComments(ByVal rng As Range)

Dim para As Paragraph

Dim txt As String

Dim i As Integer

Dim ch As String

Dim quote_open As Boolean

Dim comment_range As Range

 ' Look for comments.

 For Each para In rng.Paragraphs

 txt = para.Range.Text

 quote_open = False

 For i = 1 To Len(txt)

 ch = Mid$(txt, i, 1)

 If ch = """" Then

 ' Open or close the current quote.

 quote_open = Not quote_open

 ElseIf ch = "'" Then

 ' See if a quote is open.

 If Not quote_open Then

 ' No quote is open. This is comment.

 Set rng = para.Range

 rng.Start = rng.Start + i - 1

 rng.Font.Color = wdColorGreen

 Exit For

 End If

 End If

 Next i

 Next para

End Sub

For more information on programming the Microsoft Office applications with VBA code, see my book Microsoft Office Programming: A Guide for Experienced Developers.

